Local regularity for concave homogeneous complex degenerate elliptic equations dominating the Monge-Ampere equation

被引:4
|
作者
Abja, Soufian [1 ]
Olive, Guillaume [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Degenerate elliptic equations; Local regularity; Hessian equations; DIRICHLET PROBLEM; DUALITY;
D O I
10.1007/s10231-021-01129-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a local regularity result for W-loc(2,p) solutions to complex degenerate nonlinear elliptic equations F(D(C)(2)u) = f when they dominate the Monge-Ampere equation. Notably, we apply our result to the so-called k-Monge-Ampere equation.
引用
收藏
页码:561 / 587
页数:27
相关论文
共 50 条
  • [21] REGULARITY OF GEODESIC RAYS AND MONGE-AMPERE EQUATIONS
    Phong, D. H.
    Sturm, Jacob
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (10) : 3637 - 3650
  • [22] Regularity of Solutions to the Quaternionic Monge-Ampere Equation
    Kolodziej, Slawomir
    Sroka, Marcin
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2852 - 2864
  • [23] Regularity estimates of solutions to complex Monge-Ampere equations on Hermitian manifolds
    Zhang, Xi
    Zhang, Xiangwen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (07) : 2004 - 2026
  • [24] Holder regularity of the solution to the complex Monge-Ampere equation with Lp density
    Baracco, Luca
    Tran Vu Khanh
    Pinton, Stefano
    Zampieri, Giuseppe
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
  • [25] Local Holder continuity of solutions of the complex Monge-Ampere equation
    Nguyen Xuan Hong
    Pham Thi Lieu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [26] Gevrey regularity of subelliptic Monge-Ampere equations in the plane
    Chen, Hua
    Li, Weixi
    Xu, Chaojiang
    ADVANCES IN MATHEMATICS, 2011, 228 (03) : 1816 - 1841
  • [27] Optimal boundary regularity for a singular Monge-Ampere equation
    Jian, Huaiyu
    Li, You
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (11) : 6873 - 6890
  • [28] Global regularity for a class of Monge-Ampere type equations
    Li, Mengni
    Li, You
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (03) : 501 - 516
  • [29] UNIQUENESS OF NONTRIVIAL SOLUTIONS FOR DEGENERATE MONGE-AMPERE EQUATIONS
    Cheng, Tingzhi
    Huang, Genggeng
    Xu, Xianghui
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 234 - 253
  • [30] TWO NUMERICAL METHODS FOR THE ELLIPTIC MONGE-AMPERE EQUATION
    Benamou, Jean-David
    Froese, Brittany D.
    Oberman, Adam M.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (04): : 737 - 758