Local regularity for concave homogeneous complex degenerate elliptic equations dominating the Monge-Ampere equation

被引:5
作者
Abja, Soufian [1 ]
Olive, Guillaume [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Degenerate elliptic equations; Local regularity; Hessian equations; DIRICHLET PROBLEM; DUALITY;
D O I
10.1007/s10231-021-01129-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a local regularity result for W-loc(2,p) solutions to complex degenerate nonlinear elliptic equations F(D(C)(2)u) = f when they dominate the Monge-Ampere equation. Notably, we apply our result to the so-called k-Monge-Ampere equation.
引用
收藏
页码:561 / 587
页数:27
相关论文
共 28 条
[1]  
[Anonymous], 1991, Pluripotential Theory
[2]  
[Anonymous], 1999, Contemp. Math.
[3]  
[Anonymous], 1995, AM MATH SOC C PUBLIC
[4]  
[Anonymous], 1967, Mathematical Statistics: A Decision Theoretic Approach
[5]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[6]   A local regularity of the complex Monge-Ampere equation [J].
Blocki, Zbigniew ;
Dinew, Slawomir .
MATHEMATISCHE ANNALEN, 2011, 351 (02) :411-416
[7]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .2. COMPLEX MONGE-AMPERE, AND UNIFORMLY ELLIPTIC, EQUATIONS [J].
CAFFARELLI, L ;
KOHN, JJ ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (02) :209-252
[8]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[9]  
Dinew S., 2020, ARXIV200612979
[10]  
Dinew S., 2020, ARXIV200406444