MED-TEX: TRANSFER AND EXPLAIN KNOWLEDGE WITH LESS DATA FROM PRETRAINED MEDICAL IMAGING MODELS

被引:0
作者
Nguyen-Duc, Thanh [1 ]
Zhao, He [1 ]
Cai, Jianfei [1 ]
Phung, Dinh [1 ]
机构
[1] Monash Univ, Clayton, Vic, Australia
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022) | 2022年
关键词
Knowledge Distillation; Model Interpretation; Mutual Information;
D O I
10.1109/ISBI52829.2022.9761709
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep learning methods usually require a large amount of training data and lack interpretability. In this paper, we propose a novel knowledge distillation and model interpretation framework for medical image classification that jointly solves the above two issues. Specifically, to address the data-hungry issue, a small student model is learned with less data by distilling knowledge from a cumbersome pretrained teacher model. To interpret the teacher model and assist the learning of the student, an explainer module is introduced to highlight the regions of an input that are important for the predictions of the teacher model. Furthermore, the joint framework is trained by a principled way derived from the informationtheoretic perspective. Our framework outperforms on the knowledge distillation and model interpretation tasks compared to state-of-the-art methods on a fundus dataset.
引用
收藏
页数:4
相关论文
共 8 条
[1]   Variational Information Distillation for Knowledge Transfer [J].
Ahn, Sungsoo ;
Hu, Shell Xu ;
Damianou, Andreas ;
Lawrence, Neil D. ;
Dai, Zhenwen .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9155-9163
[2]  
Chen Jianbo, 2018, P MACHINE LEARNING R, V80
[3]  
Hinton G, 2015, Arxiv, DOI arXiv:1503.02531
[4]  
Jang E, 2017, Arxiv, DOI arXiv:1611.01144
[5]   The future of digital health with federated learning [J].
Rieke, Nicola ;
Hancox, Jonny ;
Li, Wenqi ;
Milletari, Fausto ;
Roth, Holger R. ;
Albarqouni, Shadi ;
Bakas, Spyridon ;
Galtier, Mathieu N. ;
Landman, Bennett A. ;
Maier-Hein, Klaus ;
Ourselin, Sebastien ;
Sheller, Micah ;
Summers, Ronald M. ;
Trask, Andrew ;
Xu, Daguang ;
Baust, Maximilian ;
Cardoso, M. Jorge .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[6]   Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization [J].
Selvaraju, Ramprasaath R. ;
Cogswell, Michael ;
Das, Abhishek ;
Vedantam, Ramakrishna ;
Parikh, Devi ;
Batra, Dhruv .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :618-626
[7]  
Wang H, 2019, I S BIOMED IMAGING, P228, DOI [10.1109/ISBI.2019.8759326, 10.1109/isbi.2019.8759326]
[8]  
Xu K, 2015, PR MACH LEARN RES, V37, P2048