Stability Analysis of the Nabla Distributed-Order Nonlinear Systems

被引:3
作者
Wang, Cuihong [1 ]
Zhu, Tianfen [1 ]
Chen, Yangquan [2 ]
机构
[1] Shanxi Normal Univ, Dept Math & Comp Sci, Taiyuan 030006, Peoples R China
[2] Univ Calif, Sch Engn, Mechatron Embedded Syst & Automat MESA Lab, 5200 North Lake Rd, Merced, CA 95343 USA
关键词
stability; Lyapunov direct method; Nabla fractional calculus; distributed-order; VARIABLE-ORDER; FRAMEWORK;
D O I
10.3390/fractalfract6050228
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stability of the nabla discrete distributed-order nonlinear dynamic systems is investigated in this paper. Firstly, a sufficient condition for the asymptotic stability of the nabla discrete distributed-order nonlinear systems is proposed based on Lyapunov direct method. In addition, some properties of the nabla distributed-order operators are derived. Based on these properties, a simpler criterion is provided to determine the stability of such systems. Finally, two examples are given to illustrate the validity of these results.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Wirtinger-based fractional summation inequality for stability analysis of nabla discrete fractional-order time-delay systems [J].
Wu, Xiang ;
Yang, Xujun ;
Liu, Da-Yan ;
Li, Chuandong .
NONLINEAR DYNAMICS, 2024, 112 (19) :17055-17068
[42]   Stability Analysis of Mechanical Systems with Highly Nonlinear Positional Forces under Distributed Delay [J].
A. Yu. Aleksandrov ;
A. A. Tikhonov .
Automation and Remote Control, 2023, 84 :1-13
[43]   Stability Analysis of Mechanical Systems with Highly Nonlinear Positional Forces under Distributed Delay [J].
Aleksandrov, A. Yu. ;
Tikhonov, A. A. .
AUTOMATION AND REMOTE CONTROL, 2023, 84 (01) :1-13
[44]   Ulam-Hyers stability results for a novel nonlinear Nabla Caputo fractional variable-order difference system [J].
LUO, Danfeng ;
ABDELJAWAD, Thabet ;
LUO, Zhiguo .
TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) :456-470
[45]   On the formulation and numerical simulation of distributed-order fractional optimal control problems [J].
Zaky, M. A. ;
Tenreiro Machado, J. A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 52 :177-189
[46]   Existence of a Unique Weak Solution to a Nonlinear Non-Autonomous Time-Fractional Wave Equation (of Distributed-Order) [J].
Van Bockstal, Karel .
MATHEMATICS, 2020, 8 (08)
[47]   An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions [J].
Zheng, Xiangcheng ;
Liu, Huan ;
Wang, Hong ;
Fu, Hongfei .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) :1395-1418
[48]   A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation [J].
Hou, Yaxin ;
Wen, Cao ;
Liu, Yang ;
Li, Hong .
NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (02) :855-876
[49]   Quasi-Projective Synchronization of Distributed-Order Recurrent Neural Networks [J].
Liu, Xiao ;
Li, Kelin ;
Song, Qiankun ;
Yang, Xujun .
FRACTAL AND FRACTIONAL, 2021, 5 (04)
[50]   An Efficient Method for Numerical Solutions of Distributed-Order Fractional Differential Equations [J].
Jibenja, N. ;
Yuttanan, B. ;
Razzaghi, M. .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (11)