Coadjoint representation of the BMS group on celestial Riemann surfaces

被引:41
作者
Barnich, Glenn [1 ,2 ]
Ruzziconi, Romain [3 ]
机构
[1] Univ Libre Bruxelles, Phys Theor & Math, Campus Plaine CP 231, B-1050 Brussels, Belgium
[2] Int Solvay Inst, Campus Plaine CP 231, B-1050 Brussels, Belgium
[3] TU Wien, Inst Theoret Phys, Wiedner Hauptstr 8, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Classical Theories of Gravity; Differential and Algebraic Geometry; Gauge-gravity correspondence; Space-Time Symmetries; METZNER-SACHS GROUP; ASYMPTOTIC SYMMETRY; GENERAL-RELATIVITY; GRAVITATIONAL WAVES; BONDI; POSITIVITY; ENERGY; GEOMETRY; CANNOT; EDTH;
D O I
10.1007/JHEP06(2021)079
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The coadjoint representation of the BMS group in four dimensions is constructed in a formulation that covers both the sphere and the punctured plane. The structure constants are worked out for different choices of bases. The conserved current algebra of non-radiative asymptotically flat spacetimes is explicitly interpreted in these terms.
引用
收藏
页数:41
相关论文
共 101 条
[1]   Celestial amplitudes and conformal soft theorems [J].
Adamo, Tim ;
Mason, Lionel ;
Sharma, Atul .
CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (20)
[2]   Perturbative gravity at null infinity [J].
Adamo, Tim ;
Casali, Eduardo ;
Skinner, David .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (22)
[3]  
Alekseev A., 1988, Journal of Geometry and Physics, V5, P391, DOI 10.1016/0393-0440(88)90031-9
[4]   PATH INTEGRAL QUANTIZATION OF THE COADJOINT ORBITS OF THE VIRASORO GROUP AND 2-D GRAVITY [J].
ALEKSEEV, A ;
SHATASHVILI, S .
NUCLEAR PHYSICS B, 1989, 323 (03) :719-733
[5]   On the structure and applications of the Bondi-Metzner-Sachs group [J].
Alessio, Francesco ;
Esposito, Giampiero .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (02)
[6]   CHARACTERIZATION OF SEMIDIRECT SUM LIE-ALGEBRAS [J].
ANTONIOU, IE ;
MISRA, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (04) :864-868
[7]   ENERGY MOMENTUM OF ISOLATED SYSTEMS CANNOT BE NULL [J].
ASHTEKAR, A ;
HOROWITZ, GT .
PHYSICS LETTERS A, 1982, 89 (04) :181-184
[8]   Asymptotic structure of symmetry-reduced general relativity [J].
Ashtekar, A ;
Bicak, J ;
Schmidt, BG .
PHYSICAL REVIEW D, 1997, 55 (02) :669-686
[9]   SYMPLECTIC-GEOMETRY OF RADIATIVE MODES AND CONSERVED QUANTITIES AT NULL INFINITY [J].
ASHTEKAR, A ;
STREUBEL, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1981, 376 (1767) :585-607
[10]  
Ashtekar A, 1987, Asymptotic Quantization: Based on 1984 Naples Lectures