Tuples of polynomials over finite fields with pairwise coprimality conditions

被引:1
作者
Arias De Reyna, Juan [1 ]
Heyman, Randell [2 ]
机构
[1] Univ Seville, Dept Math Anal, Seville, Spain
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
关键词
Relatively prime; Coprime; Polynomials; Finite fields; Dedekind domains;
D O I
10.1016/j.ffa.2018.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let q be a prime power. We estimate the number of tuples of degree bounded monic polynomials (Q(1),...,Q(upsilon)) is an element of (F-q[z])(upsilon) that satisfy given pairwise coprimality conditions. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:36 / 63
页数:28
相关论文
共 12 条
[1]  
de Reyna JA, 2015, J INTEGER SEQ, V18
[2]  
Benjamin A. T., 2007, MATH MAG, P196
[3]   A pentagonal number sieve [J].
Corteel, S ;
Savage, CD ;
Wilf, HS ;
Zeilberger, D .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 82 (02) :186-192
[4]   Relatively prime polynomials and nonsingular Hankel matrices over finite fields [J].
Garcia-Armas, Mario ;
Ghorpade, Sudhir R. ;
Ram, Samrith .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) :819-828
[5]   PROBABILITY ESTIMATES FOR REACHABILITY OF LINEAR SYSTEMS DEFINED OVER FINITE FIELDS [J].
Helmke, Uwe ;
Jordan, Jens ;
Lieb, Julia .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (01) :63-78
[6]   Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields [J].
Hou, Xiang-dong ;
Mullen, Gary L. .
FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (03) :304-331
[7]  
Knuth D. E., 1998, Art of computer programming: Seminumerical algorithms, V2
[8]   On the density of coprime m-tuples over holomorphy rings [J].
Micheli, Giacomo ;
Schnyder, Reto .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (03) :833-839
[9]  
Narkiewicz W, 2004, SpringerMonographsinMathe-matics
[10]  
Niederreiter H., 1983, FINITE FIELDS