JENSEN'S FUNCTIONAL EQUATION IN MULTI-NORMED SPACES

被引:7
作者
Moslehian, M. S. [1 ,2 ,3 ]
Srivastava, H. M. [4 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Math, Mashhad 917751159, Iran
[2] CEAAS, Mashhad 917751159, Iran
[3] BMRG, Mashhad 917751159, Iran
[4] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2010年 / 14卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Hyers-Ulam stability; Multi-normed space; Jensen's functional equation; Asymptotic behavior; ULAM-RASSIAS STABILITY;
D O I
10.11650/twjm/1500405801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Hyers-Ulam stability of the Jensen functional equation for mappings from linear spaces into multi-normed spaces. We then establish an asymptotic behavior of the Jensen equation in the framework of multi-normed spaces which are somewhat similar to the operator sequence spaces and have some connections with operator spaces and Banach lattices.
引用
收藏
页码:453 / 462
页数:10
相关论文
共 19 条
  • [1] [Anonymous], 1964, PROBLEMS MODERN MATH
  • [2] [Anonymous], 1998, Stability of Functional Equations in Several Variables
  • [3] Aoki T., 1950, J. Math. Soc. Japan, V2, P64
  • [4] Generalized Jensen's equations in Banach modules over a C*-algebra and its unitary group
    Boo, DH
    Oh, SQ
    Park, CG
    Park, JM
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (04): : 641 - 655
  • [5] Czerwik Stefan, 2002, Functional Equations and Inequalities in Several Variables, P4
  • [6] Stability of mappings on multi-normed spaces
    Dales, H. G.
    Moslehian, Mohammad Sal
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2007, 49 : 321 - 332
  • [7] DALES HG, 2008, MULTINORMED SPACES M
  • [8] On the stability of Jensen's functional equation on groups
    Faiziev, Valerii A.
    Sahoo, Prasanna K.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2007, 117 (01): : 31 - 48
  • [9] On the stability of the linear functional equation
    Hyers, DH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 : 222 - 224
  • [10] Jung S.M., 2001, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis