JENSEN'S FUNCTIONAL EQUATION IN MULTI-NORMED SPACES

被引:7
作者
Moslehian, M. S. [1 ,2 ,3 ]
Srivastava, H. M. [4 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Math, Mashhad 917751159, Iran
[2] CEAAS, Mashhad 917751159, Iran
[3] BMRG, Mashhad 917751159, Iran
[4] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2010年 / 14卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Hyers-Ulam stability; Multi-normed space; Jensen's functional equation; Asymptotic behavior; ULAM-RASSIAS STABILITY;
D O I
10.11650/twjm/1500405801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Hyers-Ulam stability of the Jensen functional equation for mappings from linear spaces into multi-normed spaces. We then establish an asymptotic behavior of the Jensen equation in the framework of multi-normed spaces which are somewhat similar to the operator sequence spaces and have some connections with operator spaces and Banach lattices.
引用
收藏
页码:453 / 462
页数:10
相关论文
共 19 条
[1]  
[Anonymous], 1964, PROBLEMS MODERN MATH
[2]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[3]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[4]   Generalized Jensen's equations in Banach modules over a C*-algebra and its unitary group [J].
Boo, DH ;
Oh, SQ ;
Park, CG ;
Park, JM .
TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (04) :641-655
[5]  
Czerwik Stefan, 2002, Functional Equations and Inequalities in Several Variables, P4
[6]   Stability of mappings on multi-normed spaces [J].
Dales, H. G. ;
Moslehian, Mohammad Sal .
GLASGOW MATHEMATICAL JOURNAL, 2007, 49 :321-332
[7]  
DALES HG, 2008, MULTINORMED SPACES M
[8]   On the stability of Jensen's functional equation on groups [J].
Faiziev, Valerii A. ;
Sahoo, Prasanna K. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2007, 117 (01) :31-48
[9]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[10]  
Jung S.M., 2001, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis