EEG-based estimation of mental fatigue by using KPCA-HMM and complexity parameters

被引:100
作者
Liu, Jianping [2 ]
Zhang, Chong [1 ]
Zheng, Chongxun [1 ]
机构
[1] Xi An Jiao Tong Univ, Educ Minist, Key Lab Biomed Informat Engn, Xian 710049, Peoples R China
[2] Engn Coll Armed Police Force, Dept Commun Engn, Xian 710086, Peoples R China
关键词
Mental fatigue; Electroencephalogram (EEG); Approximate entropy (ApEn); Kolmogorov complexity (Kc); KPCA-HMM; ELECTROPHYSIOLOGICAL CORRELATE; APPROXIMATE ENTROPY; SYNCHRONIZATION ERS; DRIVER FATIGUE; SLEEPINESS; ALGORITHMS; DYNAMICS;
D O I
10.1016/j.bspc.2010.01.001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Two complexity parameters of EEG, i.e approximate entropy (ApEn) and Kolmogorov complexity (Kc) are utilized to characterize the complexity and irregularity of EEG data under the different mental fatigue states Then the kernel principal component analysis (KPCA) and Hidden Markov Model (HMM) are combined to differentiate two mental fatigue states. The KPCA algorithm is employed to extract nonlinear features from the complexity parameters of EEG and improve the generalization performance of HMM The investigation suggests that ApEn and Kc can effectively describe the dynamic complexity of EEG, which is strongly correlated with mental fatigue Both complexity parameters are significantly decreased (P < 0 005)as the mental fatigue level Increases These complexity parameters may be used as the indices of the mental fatigue level. Moreover, the joint KPCA-HMM method can effectively reduce the dimensionality of the feature vectors, accelerate the classification speed and achieve higher classification accuracy (84%) of mental fatigue. Hence KPCA-HMM could be a promising model for the estimation of mental fatigue. Crown Copyright (C) 2010 Published by Elsevier Ltd All rights reserved.
引用
收藏
页码:124 / 130
页数:7
相关论文
共 42 条
[1]   Analysis of regularity in the EEG background activity of Alzheimer's disease patients with Approximate Entropy [J].
Abásolo, D ;
Hornero, R ;
Espino, P ;
Poza, J ;
Sánchez, CI ;
de la Rosa, R .
CLINICAL NEUROPHYSIOLOGY, 2005, 116 (08) :1826-1834
[2]   SUBJECTIVE AND OBJECTIVE SLEEPINESS IN THE ACTIVE INDIVIDUAL [J].
AKERSTEDT, T ;
GILLBERG, M .
INTERNATIONAL JOURNAL OF NEUROSCIENCE, 1990, 52 (1-2) :29-37
[3]   WORK PRACTICES, FATIGUE, AND NUCLEAR-POWER-PLANT SAFETY PERFORMANCE [J].
BAKER, K ;
OLSON, J ;
MORISSEAU, D .
HUMAN FACTORS, 1994, 36 (02) :244-257
[4]   Effects of mental fatigue on attention: An ERP study [J].
Boksem, MAS ;
Meijman, TF ;
Lorist, MM .
COGNITIVE BRAIN RESEARCH, 2005, 25 (01) :107-116
[5]  
Borg G., 1998, BORGS PERCEIVED EXER, DOI DOI 10.1249/00005768-199809000-00018
[6]   Tsallis entropy and cortical dynamics: the analysis of EEG signals [J].
Capurro, A ;
Diambra, L ;
Lorenzo, D ;
Macadar, O ;
Martin, MT ;
Mostaccio, C ;
Plastino, A ;
Rofman, E ;
Torres, ME ;
Velluti, J .
PHYSICA A, 1998, 257 (1-4) :149-155
[7]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[8]   Multi-class protein fold recognition using support vector machines and neural networks [J].
Ding, CHQ ;
Dubchak, I .
BIOINFORMATICS, 2001, 17 (04) :349-358
[9]   SPECTRAL-ANALYSIS OF HEART-RATE-VARIABILITY AS AN INDICATOR OF DRIVER FATIGUE [J].
EGELUND, N .
ERGONOMICS, 1982, 25 (07) :663-672
[10]   Electroencephalographic study of drowsiness in simulated driving with sleep deprivation [J].
Eoh, HJ ;
Chung, MK ;
Kim, SH .
INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS, 2005, 35 (04) :307-320