Using transfer learning to detect galaxy mergers

被引:102
作者
Ackermann, Sandro [1 ]
Schawinski, Kevin [1 ]
Zhang, Ce [2 ]
Weigel, Anna K. [1 ]
Turp, M. Dennis [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, Dept Phys, Wolfgang Pauli Str 2, CH-8093 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Syst Grp, Dept Comp Sci, Univ Str 6, CH-8006 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
methods: data analysis; techniques: image processing; galaxies: general; SUPERMASSIVE BLACK-HOLES; STAR-FORMATION; LUMINOSITY FUNCTIONS; NEURAL-NETWORKS; REDSHIFT SURVEY; TIME-SCALES; ZOO; SPACE; MODEL; MORPHOLOGIES;
D O I
10.1093/mnras/sty1398
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the use of deep convolutional neural networks (deep CNNs) for automatic visual detection of galaxy mergers. Moreover, we investigate the use of transfer learning in conjunction with CNNs by retraining networks first trained on pictures of everyday objects. We test the hypothesis that transfer learning is useful for improving classification performance for small training sets. This would make transfer learning useful for finding rare objects in astronomical imaging data sets. We find that these deep learning methods perform significantly better than current state-of-the-art merger detection methods based on non-parametric systems such as CAS and GM(20). Our method is end-to-end and robust to image noise and distortions; it can be applied directly without image preprocessing. We also find that transfer learning can act as a regularizer in some cases, leading to better overall classification accuracy (p = 0.02). Transfer learning on our full training set leads to a lowered error rate from 0.038 +/- 1 to 0.032 +/- 1, a relative improvement of 15 percent. Finally, we perform a basic sanity-check by creating a merger sample with our method, and comparing with an already existing, manually created merger catalogue in terms of colour mass distribution and stellar mass function.
引用
收藏
页码:415 / 425
页数:11
相关论文
共 61 条
[21]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[22]   Rotation-invariant convolutional neural networks for galaxy morphology prediction [J].
Dieleman, Sander ;
Willett, Kyle W. ;
Dambre, Joni .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 450 (02) :1441-1459
[23]  
Eadie W. T., 1971, Statistical methods in experimental physics
[24]   ANALYSIS OF A COMPLETE GALAXY REDSHIFT SURVEY .2. THE FIELD-GALAXY LUMINOSITY FUNCTION [J].
EFSTATHIOU, G ;
ELLIS, RS ;
PETERSON, BA .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1988, 232 (02) :431-461
[25]   Galaxy luminosity functions to z ∼ 1 from deep2 and combo-17:: Implications for red galaxy formation [J].
Faber, S. M. ;
Willmer, C. N. A. ;
Wolf, C. ;
Koo, D. C. ;
Weiner, B. J. ;
Newman, J. A. ;
Im, M. ;
Coil, A. L. ;
Conroy, C. ;
Cooper, M. C. ;
Davis, M. ;
Finkbeiner, D. P. ;
Gerke, B. F. ;
Gebhardt, K. ;
Groth, E. J. ;
Guhathakurta, P. ;
Harker, J. ;
Kaiser, N. ;
Kassin, S. ;
Kleinheinrich, M. ;
Konidaris, N. P. ;
Kron, R. G. ;
Lin, L. ;
Luppino, G. ;
Madgwick, D. S. ;
Meisenheimer, K. ;
Noeske, K. G. ;
Phillips, A. C. ;
Sarajedini, V. L. ;
Schiavon, R. P. ;
Simard, L. ;
Szalay, A. S. ;
Vogt, N. P. ;
Yan, R. .
ASTROPHYSICAL JOURNAL, 2007, 665 (01) :265-294
[27]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[28]   A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids [J].
Hopkins, PF ;
Hernquist, L ;
Cox, TJ ;
Di Matteo, T ;
Robertson, B ;
Springel, V .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2006, 163 (01) :1-49
[29]   APPROXIMATION CAPABILITIES OF MULTILAYER FEEDFORWARD NETWORKS [J].
HORNIK, K .
NEURAL NETWORKS, 1991, 4 (02) :251-257
[30]   Measuring photometric redshifts using galaxy images and Deep Neural Networks [J].
Hoyle, B. .
ASTRONOMY AND COMPUTING, 2016, 16 :34-40