We present a method for determining the shear modulus of an elastic material wherein a spatially-modulated acoustic radiation force is used to generate a disturbance of known spatial frequency (wavelength). The propagation of this initial displacement as a shear wave is measured using ultrasound tracking methods and the temporal frequency of the shear wave is estimated. Given the known wavelength and material density and the measured estimate of temporal frequency, the shear modulus at the point of excitation may be calculated easily. Using this method, the shear moduli of two gelatin phantoms was estimated to be 1.4 and 5.8 kPa, in good agreement with 1.5 and 5.6 kPa values determined though quasistatic material testing.