共 56 条
Mitochondrial Superoxide Contributes to Blood Flow and Axonal Transport Deficits in the Tg2576 Mouse Model of Alzheimer's Disease
被引:55
作者:
Massaad, Cynthia A.
[1
]
Amin, Samir K.
[1
]
Hu, Lingyun
[1
]
Mei, Yuan
[1
,2
]
Klann, Eric
[3
]
Pautler, Robia G.
[1
]
机构:
[1] Baylor Coll Med, Dept Mol Physiol & Biophys, Houston, TX 77030 USA
[2] Rice Univ, Dept Cognit Sci, Houston, TX USA
[3] NYU, Ctr Neural Sci, New York, NY 10003 USA
来源:
基金:
美国国家卫生研究院;
关键词:
NITRIC-OXIDE SYNTHASE;
AMYLOID-BETA PROTEIN;
OXIDATIVE STRESS;
MEMORY DEFICITS;
DISMUTASE;
TAU;
PHOSPHORYLATION;
BRAIN;
OVEREXPRESSION;
DYSFUNCTION;
D O I:
10.1371/journal.pone.0010561
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive decline in cognitive functions and the deposition of aggregated amyloid beta (A beta) into senile plaques and the protein tau into tangles. In addition, a general state of oxidation has long been known to be a major hallmark of the disease. What is not known however, are the mechanisms by which oxidative stress contributes to the pathology of AD. Methodology/Principal Findings: In the current study, we used a mouse model of AD and genetically boosted its ability to quench free radicals of specific mitochondrial origin. We found that such manipulation conferred to the AD mice protection against vascular as well as neuronal deficits that typically affect them. We also found that the vascular deficits are improved via antioxidant modulation of the endothelial nitric oxide synthase, an enzyme primarily responsible for the production of nitric oxide, while neuronal deficits are improved via modulation of the phosphorylation status of the protein tau, which is a neuronal cytoskeletal stabilizer. Conclusions/Significance: These findings directly link free radicals of specific mitochondrial origin to AD-associated vascular and neuronal pathology.
引用
收藏
页数:9
相关论文