On general plane fronted waves.: Geodesics

被引:58
作者
Candela, AM
Flores, JL
Sánchez, M
机构
[1] Univ Bari, Dipartimento Interuniv Matemat, I-70125 Bari, Italy
[2] Univ Granada, Fac Ciencias, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
gravitational waves; plane fronted waves; geodesic connectedness; completeness; causal geodesics; variational methods; Ljusternik-Schnirelman theory;
D O I
10.1023/A:1022962017685
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A general class of Lorentzian metrics, M-0 x R-2, [., .](x) + 2 du dv + H(x, u) du(2), with (M-0, [., .](x)) any Riemannian manifold, is introduced in order to generalize classical exact plane fronted waves. Here, we start a systematic study of their main geodesic properties: geodesic completeness, geodesic connectedness and multiplicity causal character of connecting geodesics. These results are independent of the possibility of a full integration of geodesic equations. Variational and geometrical techniques are applied systematically. In particular, we prove that the asymptotic behavior of H(x, u) with x at infinity determines many properties of geodesics. Essentially, a subquadratic growth of H ensures geodesic completeness and connectedness, while the critical situation appears when H(x, u) behaves in some direction as \x\(2), as in the classical model of exact gravitational waves.
引用
收藏
页码:631 / 649
页数:19
相关论文
共 36 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]  
Avez A., 1963, ANN I FOURIER, V13, P105, DOI [10.5802/aif.144, DOI 10.5802/AIF.144]
[3]   MODEL OF A GRAVITATIONAL-WAVE IN SCHWARZSCHILD SPACE-TIME [J].
BARRABES, C ;
HOGAN, PA .
PHYSICAL REVIEW D, 1994, 50 (10) :6312-6317
[4]  
BEEM JK, 1996, MONOGRAPHS TXB PURE, V202
[5]   ON THE EXISTENCE OF INFINITELY MANY GEODESICS ON SPACE-TIME MANIFOLDS [J].
BENCI, V ;
FORTUNATO, D .
ADVANCES IN MATHEMATICS, 1994, 105 (01) :1-25
[6]   ON THE EXISTENCE OF MULTIPLE GEODESICS IN STATIC SPACE-TIMES [J].
BENCI, V ;
FORTUNATO, D ;
GIANNONI, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (01) :79-102
[7]   FINITE-ENERGY WAVE-PACKETS OF GRAVITATIONAL-RADIATION [J].
BINI, D ;
FERRARI, V ;
IBANEZ, J .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1989, 103 (01) :29-44
[8]   The gravitational wave rocket [J].
Bonnor, WB ;
Piper, MS .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (10) :2895-2904
[9]   Einstein spaces which are mapped conformally on each other [J].
Brinkmann, HW .
MATHEMATISCHE ANNALEN, 1925, 94 :119-145
[10]  
CANDELA AM, 2002, QUADRATIC BOLZA TYPE