The ordinary quivers of Hochschild extension algebras for self-injective Nakayama algebras

被引:2
作者
Koie, Hideyuki [1 ]
Itagaki, Tomohiro [1 ]
Sanada, Katsunori [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Tokyo, Japan
基金
日本学术振兴会;
关键词
Hochschild extension; Hochschild (co)homology; trivial extension; self-injective Nakayama algebra; symmetric algebra; quiver; COHOMOLOGY; HOMOLOGY;
D O I
10.1080/00927872.2018.1430806
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a Hochschild extension algebra of a finite dimensional algebra A over a field K by the standard duality A-bimodule Hom(K)(A, K). In this paper, we determine the ordinary quiver of T if A is a self-injective Nakayama algebra by means of the N-graded second Hochschild homology group HH2(A) in the sense of Skoldberg.
引用
收藏
页码:3950 / 3964
页数:15
相关论文
共 15 条
[1]   Comparison morphisms and the Hochschild cohomology ring of truncated quiver algebras [J].
Ames, Guillermo ;
Cagliero, Leandro ;
Tirao, Paulo .
JOURNAL OF ALGEBRA, 2009, 322 (05) :1466-1497
[2]  
Assem I., 2006, Techniques of Representation Theory, V1
[3]   On the Hochschild cohomology of truncated cycle algebras [J].
Bardzell, MJ ;
Locateli, AC ;
Marcos, EN .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (03) :1615-1639
[4]   COHOMOLOGY OF INCIDENCE ALGEBRAS AND SIMPLICIAL COMPLEXES [J].
CIBILS, C .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 56 (03) :221-232
[5]  
Erdmann K, 1999, FORUM MATH, V11, P177
[6]   Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila!Brenner [J].
Fernández, EA ;
Platzeck, MI .
JOURNAL OF ALGEBRA, 2002, 249 (02) :326-344
[7]   ON THE COHOMOLOGY GROUPS OF AN ASSOCIATIVE ALGEBRA [J].
HOCHSCHILD, G .
ANNALS OF MATHEMATICS, 1945, 46 (01) :58-67
[8]   The dimension formula of the cyclic homology of truncated quiver algebras over a field of positive characteristic [J].
Itagaki, Tomohiro ;
Sanada, Katsunori .
JOURNAL OF ALGEBRA, 2014, 404 :200-221
[9]  
Ohnuki Y, 2002, OSAKA J MATH, V39, P259
[10]  
Ohnuki Y., 1999, C MATH, V80, P155, DOI DOI 10.4064/CM-80-2-155-174