The intracellular sites of early replication and budding of SARS-coronavirus

被引:283
|
作者
Stertz, Silke
Reichelt, Mike
Spiegel, Martin
Kuri, Thomas
Martinez-Sobrido, Luis
Garcia-Sastre, Adolfo
Weber, Friedemann
Kochs, Georg [1 ]
机构
[1] Univ Freiburg, Dept Virol, D-79008 Freiburg, Germany
[2] Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA 94305 USA
[3] Mt Sinai Sch Med, Dept Microbiol, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
SARS-coronavirus; replication; budding; double membrane vesicles;
D O I
10.1016/j.virol.2006.11.027
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In this study, we analyzed the replication and budding sites of severe acute respiratory syndrome coronavirus (SARS-CoV) at early time points of infection. We detected cytoplasmic accumulations containing the viral nucleocapsid protein, viral RNA and the non-structural protein nsp3. Using EM techniques, we found that these putative viral replication sites were associated with characteristic membrane tubules and double membrane vesicles that most probably originated from ER cisternae. In addition to its presence at the replication sites, N also accumulated in the Golgi region and colocalized with the viral spike protein. Immuno-EM revealed that budding occurred at membranes of the ERGIC (ER-Golgi intermediate compartment) and the Golgi region as early as 3 h post infection, demonstrating that SARS-CoV replicates surprisingly fast. Our data suggest that SARS-CoV establishes replication complexes at ER-derived membranes. Later on, viral nucleocapsids have to be transported to the budding sites in the Golgi region where the viral glycoproteins accumulate and particle formation occurs. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:304 / 315
页数:12
相关论文
共 50 条
  • [21] Trafficking motifs in the SARS-coronavirus nucleocapsid protein
    You, Jae-Hwan
    Reed, Mark L.
    Hiscox, Julian A.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 358 (04) : 1015 - 1020
  • [22] Advancements in the development of antivirals against SARS-Coronavirus
    Kumar, Mrityunjay
    Baig, Mirza Sarwar
    Bhardwaj, Kanchan
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2025, 15
  • [23] Wildlife hosts of SARS-coronavirus and related viruses
    Wang, L-F.
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2007, 29 : S80 - S80
  • [24] SARS diagnosis, monitoring and prognostication by SARS-coronavirus RNA detection
    Lo, Y. M. D.
    HONG KONG MEDICAL JOURNAL, 2009, 15 (06) : 11 - 14
  • [26] Identification of an epitope of SARS-coronavirus nucleocapsid protein
    YING LIN
    CellResearch, 2003, (03) : 141 - 145
  • [27] Interferon and cytokine responses to SARS-coronavirus infection
    Thiel, Volker
    Weber, Friedemann
    CYTOKINE & GROWTH FACTOR REVIEWS, 2008, 19 (02) : 121 - 132
  • [28] Hypercoagulability in Pediatric Patients Infected With SARS-Coronavirus 2
    Emani, Sirisha
    Torres, Andrew
    Diallo, Fatoumata
    Diallo, Mamadou
    Nathan, Meena
    Ibla, Juan
    Ghbeis, Muhammad
    Vanderpluym, Christina J.
    Emani, Sitaram
    CIRCULATION, 2020, 142
  • [29] SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro
    van Hemert, Martijn J.
    van den Worm, Sjoerd H. E.
    Knoops, Kevin
    Mommaas, A. Mieke
    Gorbalenya, Alexander E.
    Snijder, Eric J.
    PLOS PATHOGENS, 2008, 4 (05)
  • [30] Susceptibility of different eukaryotic cell lines to SARS-coronavirus
    Hattermann, K
    Müller, MA
    Nitsche, A
    Wendt, S
    Mantke, OD
    Niedrig, M
    ARCHIVES OF VIROLOGY, 2005, 150 (05) : 1023 - 1031