The groups of points on abelian varieties over finite fields

被引:12
作者
Rybakov, Sergey [1 ,2 ,3 ]
机构
[1] CNRS, UMI 2615, Poncelet Lab, F-75700 Paris, France
[2] Independent Univ Moscow, Moscow, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 117901, Russia
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2010年 / 8卷 / 02期
关键词
Abelian variety; The group of rational points; Finite field; Newton polygon; Hodge polygon; ELLIPTIC-CURVES;
D O I
10.2478/s11533-010-0003-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an abelian variety with commutative endomorphism algebra over a finite field k. The k-isogeny class of A is uniquely determined by a Weil polynomial f (A) without multiple roots. We give a classification of the groups of k-rational points on varieties from this class in terms of Newton polygons of f (A) (1 - t).
引用
收藏
页码:282 / 288
页数:7
相关论文
共 12 条
[1]  
[Anonymous], ANN SCI ECOLE NORM S
[2]  
[Anonymous], 1985, THEORY NUMBERS ITS A
[3]  
Berthelot Pierre, 1978, Notes on Crystalline Cohomology
[4]  
DEMAZURE M., 1972, Lecture Notes in Mathematics, V302
[5]  
KEDLAYA K, P ADIC DIFF IN PRESS
[6]   A NOTE ON ELLIPTIC-CURVES OVER FINITE-FIELDS [J].
RUCK, HG .
MATHEMATICS OF COMPUTATION, 1987, 49 (179) :301-304
[7]   NONSINGULAR PLANE CUBIC CURVES OVER FINITE-FIELDS [J].
SCHOOF, R .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 46 (02) :183-211
[8]  
Tsfasman Michael, 2007, Algebraic Geometric Codes: Basic Notions
[9]   A NOTE ON ELLIPTIC-CURVES OVER FINITE-FIELDS [J].
VOLOCH, JF .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (04) :455-458
[10]  
Waterhouse W.C., 1969, P S PURE MATH, VXX, P53