Topological entanglement entropy from the holographic partition function

被引:1
|
作者
Fendley, Paul [1 ]
Fisher, Matthew P. A.
Nayak, Chetan
机构
[1] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Microsoft Project Q, Santa Barbara, CA 93106 USA
[4] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
topological field theory; entanglement entropy; conformal field theory; fractional quantum hall effect;
D O I
10.1007/s10955-006-9275-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the entropy of chiral 2+1-dimensional topological phases, where there are both gapped bulk excitations and gapless edge modes. We show how the entanglement entropy of both types of excitations can be encoded in a single partition function. This partition function is holographic because it can be expressed entirely in terms of the conformal field theory describing the edge modes. We give a general expression for the holographic partition function, and discuss several examples in depth, including abelian and non-abelian fractional quantum Hall states, and p+ip superconductors. We extend these results to include a point contact allowing tunneling between two points on the edge, which causes thermodynamic entropy associated with the point contact to be lost with decreasing temperature. Such a perturbation effectively breaks the system in two, and we can identify the thermodynamic entropy loss with the loss of the edge entanglement entropy. From these results, we obtain a simple interpretation of the non-integer 'ground state degeneracy' which is obtained in 1+1-dimensional quantum impurity problems: its logarithm is a 2+1-dimensional topological entanglement entropy.
引用
收藏
页码:1111 / 1144
页数:34
相关论文
共 50 条
  • [1] Topological Entanglement Entropy from the Holographic Partition Function
    Paul Fendley
    Matthew P. A. Fisher
    Chetan Nayak
    Journal of Statistical Physics, 2007, 126 : 1111 - 1144
  • [2] Entanglement entropy from a holographic viewpoint
    Takayanagi, Tadashi
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (15)
  • [3] Holographic Transport with Topological Term and Entropy Function
    Nastase, Horatiu
    Tiedt, Caio Luiz
    BRAZILIAN JOURNAL OF PHYSICS, 2024, 54 (04)
  • [4] Holographic Entanglement Entropy
    Danehkar, Ashkbiz
    FRONTIERS IN PHYSICS, 2019, 7
  • [5] Lifshitz entanglement entropy from holographic cMERA
    Simon A. Gentle
    Stefan Vandoren
    Journal of High Energy Physics, 2018
  • [6] Entanglement entropy from the holographic stress tensor
    Bhattacharyya, Arpan
    Sinha, Aninda
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (23)
  • [7] Lifshitz entanglement entropy from holographic cMERA
    Gentle, Simon A.
    Vandoren, Stefan
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [8] Topological entanglement entropy
    Kitaev, A
    Preskill, J
    PHYSICAL REVIEW LETTERS, 2006, 96 (11)
  • [9] Anyonic entanglement and topological entanglement entropy
    Bonderson, Parsa
    Knapp, Christina
    Patel, Kaushal
    ANNALS OF PHYSICS, 2017, 385 : 399 - 468
  • [10] Renormalization of entanglement entropy from topological terms
    Anastasiou, Giorgos
    Araya, Ignacio J.
    Olea, Rodrigo
    PHYSICAL REVIEW D, 2018, 97 (10)