Quantum transport in Sierpinski carpets

被引:77
|
作者
van Veen, Edo [1 ]
Yuan, Shengjun [1 ]
Katsnelson, Mikhail I. [1 ]
Polini, Marco [2 ]
Tomadin, Andrea [3 ,4 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
[2] Ist Italiano Tecnol, Graphene Labs, Via Morego 30, I-16163 Genoa, Italy
[3] Ist Nanosci CNR, NEST, I-56126 Pisa, Italy
[4] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
基金
欧洲研究理事会;
关键词
FRACTAL CONDUCTANCE FLUCTUATIONS; ELECTRONIC TRANSPORT; SCHRODINGER-EQUATION; DIRAC FERMIONS; LATTICES; GASKET; REALIZATION; DIFFUSION; GRAPHENE; MEDIA;
D O I
10.1103/PhysRevB.93.115428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent progress in the design and fabrication of artificial two-dimensional (2D) materials paves the way for the experimental realization of electron systems moving on complex geometries, such as plane fractals. In this work, we calculate the quantum conductance of a 2D electron gas roaming on a Sierpinski carpet (SC), i.e., a plane fractal with Hausdorff dimension intermediate between 1 and 2. We find that the fluctuations of the quantum conductance are a function of energy with a fractal graph, whose dimension can be chosen by changing the geometry of the SC. This behavior is independent of the underlying lattice geometry.
引用
收藏
页数:5
相关论文
共 50 条