Quantum transport in Sierpinski carpets

被引:77
|
作者
van Veen, Edo [1 ]
Yuan, Shengjun [1 ]
Katsnelson, Mikhail I. [1 ]
Polini, Marco [2 ]
Tomadin, Andrea [3 ,4 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
[2] Ist Italiano Tecnol, Graphene Labs, Via Morego 30, I-16163 Genoa, Italy
[3] Ist Nanosci CNR, NEST, I-56126 Pisa, Italy
[4] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
基金
欧洲研究理事会;
关键词
FRACTAL CONDUCTANCE FLUCTUATIONS; ELECTRONIC TRANSPORT; SCHRODINGER-EQUATION; DIRAC FERMIONS; LATTICES; GASKET; REALIZATION; DIFFUSION; GRAPHENE; MEDIA;
D O I
10.1103/PhysRevB.93.115428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent progress in the design and fabrication of artificial two-dimensional (2D) materials paves the way for the experimental realization of electron systems moving on complex geometries, such as plane fractals. In this work, we calculate the quantum conductance of a 2D electron gas roaming on a Sierpinski carpet (SC), i.e., a plane fractal with Hausdorff dimension intermediate between 1 and 2. We find that the fluctuations of the quantum conductance are a function of energy with a fractal graph, whose dimension can be chosen by changing the geometry of the SC. This behavior is independent of the underlying lattice geometry.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] QUASISYMMETRIC EMBEDDINGS OF SLIT SIERPINSKI CARPETS
    Hakobyan, Hrant
    Li, Wen-Bo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 8877 - 8918
  • [32] Quasisymmetric rigidity of square Sierpinski carpets
    Bonk, Mario
    Merenkov, Sergei
    ANNALS OF MATHEMATICS, 2013, 177 (02) : 591 - 643
  • [33] INTERSECTIONS OF TRANSLATION OF A CLASS OF SIERPINSKI CARPETS
    Lu, Jian
    Tan, Bo
    Zou, Yuru
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [34] COUPLING AND HARNACK INEQUALITIES FOR SIERPINSKI CARPETS
    BARLOW, MT
    BASS, RF
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) : 208 - 212
  • [35] Uniqueness of Brownian motion on Sierpinski carpets
    Barlow, Martin T.
    Bass, Richard F.
    Kumagai, Takashi
    Teplyaev, Alexander
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (03) : 655 - 701
  • [36] On totally disconnected generalised Sierpinski carpets
    Cristea, Ligia L.
    Steinsky, Bertran
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2014, 57 (01): : 27 - 34
  • [37] TRANSPORT PROCESSES IN FRACTALS .6. STOKES-FLOW THROUGH SIERPINSKI CARPETS
    ADLER, PM
    PHYSICS OF FLUIDS, 1986, 29 (01) : 15 - 22
  • [38] REMARKS ON QUASISYMMETRIC RIGIDITY OF SQUARE SIERPINSKI CARPETS
    Rao, Feng
    Wen, Shengyou
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (05)
  • [39] STUDIES ON THE SCALING EXPONENTS OF CONDUCTIVITY FOR SIERPINSKI CARPETS
    YUAN, LY
    TAO, R
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (02): : 401 - 409
  • [40] Investigation of optical diffraction by Sierpinski's carpets
    Alexander, M
    Vasil, R
    FIFTH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 2001, 4607 : 220 - 226