Quantum transport in Sierpinski carpets

被引:77
|
作者
van Veen, Edo [1 ]
Yuan, Shengjun [1 ]
Katsnelson, Mikhail I. [1 ]
Polini, Marco [2 ]
Tomadin, Andrea [3 ,4 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
[2] Ist Italiano Tecnol, Graphene Labs, Via Morego 30, I-16163 Genoa, Italy
[3] Ist Nanosci CNR, NEST, I-56126 Pisa, Italy
[4] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
基金
欧洲研究理事会;
关键词
FRACTAL CONDUCTANCE FLUCTUATIONS; ELECTRONIC TRANSPORT; SCHRODINGER-EQUATION; DIRAC FERMIONS; LATTICES; GASKET; REALIZATION; DIFFUSION; GRAPHENE; MEDIA;
D O I
10.1103/PhysRevB.93.115428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent progress in the design and fabrication of artificial two-dimensional (2D) materials paves the way for the experimental realization of electron systems moving on complex geometries, such as plane fractals. In this work, we calculate the quantum conductance of a 2D electron gas roaming on a Sierpinski carpet (SC), i.e., a plane fractal with Hausdorff dimension intermediate between 1 and 2. We find that the fluctuations of the quantum conductance are a function of energy with a fractal graph, whose dimension can be chosen by changing the geometry of the SC. This behavior is independent of the underlying lattice geometry.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] The topological Hausdorff dimension and transport properties of Sierpinski carpets
    Balankin, Alexander S.
    PHYSICS LETTERS A, 2017, 381 (34) : 2801 - 2808
  • [2] Uniformization of Sierpinski Carpets by Square Carpets
    Ntalampekos, Dimitrios
    POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 91 - 177
  • [3] Harmonic Functions on Sierpinski Carpets
    Ntalampekos, Dimitrios
    POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 9 - 89
  • [4] The pore structure of Sierpinski carpets
    Franz, A
    Schulzky, C
    Tarafdar, S
    Hoffmann, KH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42): : 8751 - 8765
  • [5] On Sierpinski carpets and doubling measures
    Peng, Fengji
    Wen, Shengyou
    NONLINEARITY, 2014, 27 (06) : 1287 - 1298
  • [6] A class of Sierpinski carpets with overlaps
    Zou, Yuru
    Yao, Yuanyuan
    Li, Wenxia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 1422 - 1432
  • [7] MULTIFRACTAL ANALYSIS OF SIERPINSKI CARPETS
    KIM, JH
    YOON, DH
    KIM, I
    KIM, MH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1993, 26 : S402 - S405
  • [8] Connected generalised Sierpinski carpets
    Cristea, Ligia Loreta
    Steinsky, Bertran
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (07) : 1157 - 1162
  • [9] Non-Removability of Sierpinski Carpets
    Ntalampekos, Dimitrios
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (03) : 847 - 854
  • [10] THE HAUSDORFF DIMENSION OF GENERAL SIERPINSKI CARPETS
    MCMULLEN, C
    NAGOYA MATHEMATICAL JOURNAL, 1984, 96 (DEC) : 1 - 9