Cathode materials for rechargeable lithium batteries: Recent progress and future prospects

被引:92
作者
Kotal, Moumita [1 ]
Jakhar, Sonu [1 ]
Roy, Sandipan [2 ]
Sharma, Harish K. [1 ]
机构
[1] Mahsrishi Markandeshwar Deemed Univ, Dept Chem, Ambala 133207, Haryana, India
[2] Raghunathpur Coll, Dept Chem, Purulia 723133, W Bengal, India
关键词
ENHANCED ELECTROCHEMICAL PERFORMANCE; SOLID-ELECTROLYTE INTERPHASE; COVALENT ORGANIC FRAMEWORKS; RICH LAYERED OXIDES; LI-ION; HIGH-CAPACITY; HIGH-POWER; SURFACE MODIFICATION; POSITIVE-ELECTRODE; LONG-LIFE;
D O I
10.1016/j.est.2021.103534
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To reach the modern demand of high efficiency energy sources for electric vehicles and electronic devices, it is become desirable and challenging to develop advance lithium ion batteries (LIBs) with high energy capacity, power density, and structural stability. Among various parts of LIBs, cathode material is heaviest component which account almost 41% of whole cell and also majorly decides the performance of battery. Especially, after the award of 2019 Nobel Prize in Chemistry for the development of LIBs, it is illuminating to recall at the evolution of the cathode chemistry which made the modern lithium-ion technology realistic. Moreover, efficiency of positive electrodes further balanced by safety, cyclic stability, rate capability and cost of electrode material. Furthermore, electrochemical properties of materials are directly connected with porosity, structure type and morphology, which can be tuned by various strategies. Herein, we summarized recent literatures on the properties and limitations of various types of cathode materials for LIBs, such as Layered transition metal oxides, spinel oxides, polyanion compounds, conversion-type cathode and organic cathodes materials. This review promotes a deeper understanding towards their electrochemical properties and cyclic efficiency of materials with crystal structure of cathodes. Recent advantages and future prospects of cathode materials towards the exploration of future-generation LIBs have also been highlighted in this review, aiming to remarkably reduce the cost and enhance the efficiency of future LIBs, which may revolutionize the transportation way and various aspects of our lives.
引用
收藏
页数:26
相关论文
共 317 条
[1]  
a Nelson P., 2012, Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles Chemical Sciences and Engineering Division
[2]   X-ray diffraction, 57Fe Mossbauer and step potential electrochemical spectroscopy study of LiFeyCo1-yO2 compounds [J].
Alcántara, R ;
Jumas, JC ;
Lavela, P ;
Olivier-Fourcade, J ;
Pérez-Vicente, C ;
Tirado, JL .
JOURNAL OF POWER SOURCES, 1999, 81 :547-553
[3]   INVESTIGATION INTO USE OF QUINONE COMPOUNDS FOR BATTERY CATHODES [J].
ALT, H ;
BINDER, H ;
SANDSTEDE, G ;
KOHLING, A .
ELECTROCHIMICA ACTA, 1972, 17 (05) :873-+
[4]   Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes [J].
Aravindan, V. ;
Karthikeyan, K. ;
Kang, K. S. ;
Yoon, W. S. ;
Kim, W. S. ;
Lee, Y. S. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (08) :2470-2475
[5]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[6]  
Armand M, 2009, NAT MATER, V8, P120, DOI [10.1038/nmat2372, 10.1038/NMAT2372]
[7]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[8]   Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1394-A1398
[9]   Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications [J].
Belharouak, I ;
Sun, YK ;
Liu, J ;
Amine, K .
JOURNAL OF POWER SOURCES, 2003, 123 (02) :247-252
[10]   Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes [J].
Bhatt, Mahesh Datt ;
O'Dwyer, Colm .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (07) :4799-4844