Reconfiguration of Interfacial and Bulk Energy Band Structure for High-Performance Organic and Thermal-Stability Enhanced Perovskite Solar Cells

被引:18
|
作者
Guo, Yaxiong [1 ,2 ]
Lei, Hongwei [1 ]
Wang, Changlei [3 ,4 ]
Ma, Junjie [2 ]
Chen, Cong [2 ]
Zheng, Xiaolu [2 ]
Yang, Guang [2 ]
Xiong, Liangbin [5 ]
Tan, Zuojun [1 ]
机构
[1] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[3] Soochow Univ, Sch Optoelect Sci & Engn, Suzhou 215006, Peoples R China
[4] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China
[5] Hubei Engn Univ, Sch Phys & Elect Informat Engn, Xiaogan 432000, Peoples R China
来源
SOLAR RRL | 2020年 / 4卷 / 04期
基金
中国国家自然科学基金;
关键词
thermal stability; guanidinium; defects; hydrogen bonding; electron transport layers; EFFICIENT; PLANAR; CATION; GUANIDINIUM; METHYLAMMONIUM; PASSIVATION; LAYER; SNO2;
D O I
10.1002/solr.201900482
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tin oxide (SnO2) offers its advantages in widespread applications that require efficient carrier transport. However, the usages of SnO2 in organic solar cells are hindered because of dangling bonds on the surface of SnO2. Herein, PFN-Br as an interfacial layer to tailor the work function of SnO2 is adopted, making it an ideal candidate for interfacial material in organic electronics. Meanwhile, such an efficient SnO2/PFN-Br electron transport layer (ETL) can also be applied to perovskite devices and achieve competitive efficiency. To eliminate current-voltage hysteresis and improve poor thermodynamic stability of perovskite solar cells (PSCs), 5 mol% of guanidinium iodide (GAI) into the (MA)(x)(FA)(1 - x)PbI3 precursor solution is incorporated, enabling the formation of triple-cation perovskite films with excellent optoelectronic quality and stability. The combination of an SnO2/PFN-Br ETL and GAI doping strategy finally delivers power conversion efficiencies over 21% and negligible current-voltage hysteresis in planar PSCs. These improvements arise from the strong hydrogen bonding caused by the incorporation of GA(+). It can stiffen the inorganic Pb-I lattice of the unit cell and restrain the formation of iodine vacancies defects. Moreover, the strong hydrogen bonding can immobilize iodide ion and thus enhance the thermal stability of the corresponding device.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Towards Simplifying the Device Structure of High-Performance Perovskite Solar Cells
    Huang, Yulan
    Liu, Tanghao
    Liang, Chao
    Xia, Junmin
    Li, Dongyang
    Zhang, Haichao
    Amini, Abbas
    Xing, Guichuan
    Cheng, Chun
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (28)
  • [32] Bulk Restructure of Perovskite Films via Surface Passivation for High-Performance Solar Cells
    Xiong, Jian
    Liu, Naihe
    Hu, Xiaotian
    Qi, Yifang
    Liu, Weizhi
    Dai, Junqian
    Zhang, Yongsong
    Dai, Zhongjun
    Zhang, Xiaowen
    Huang, Yu
    Zhang, Zheling
    Dai, Qilin
    Zhang, Jian
    ADVANCED ENERGY MATERIALS, 2022, 12 (33)
  • [33] Buried organic interlayer for high-performance and stable wide-bandgap perovskite solar cells
    Kim, Haeun
    Lee, Soo Yeon
    Park, Hansol
    Heo, Jihyeon
    Kim, Hakjun
    Kim, Yoonsung
    Prayogo, Juan Anthony
    Kim, Young-Hoon
    Whang, Dong Ryeol
    Chang, Dong Wook
    Park, Hui Joon
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [34] Radical Molecular Modulator for High-Performance Perovskite Solar Cells
    Peng, Qi
    Zheng, Xin
    Zhang, Xiaoru
    You, Shuai
    Li, Lin
    Zhao, Yang
    Zhang, Shujing
    Luo, Long
    Zeng, Haipeng
    Li, Xiong
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [35] Graphene oxide as an efficient hole-transporting material for high-performance perovskite solar cells with enhanced stability
    Yang, Qing-Dan
    Li, Jia
    Cheng, Yuanhang
    Li, Ho-Wa
    Guan, Zhiqiang
    Yu, Binbin
    Tsang, Sai-Wing
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (20) : 9852 - 9858
  • [36] Coagulated SnO2 Colloids for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability
    Liu, Zhongze
    Deng, Kaimo
    Hu, Jun
    Li, Liang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (33) : 11497 - 11504
  • [37] Interfacial Engineering for High-Performance PTAA-Based Inverted 3D Perovskite Solar Cells
    Li, Yang
    Liao, Jin-Feng
    Pan, Hui
    Xing, Guichuan
    SOLAR RRL, 2022, 6 (12)
  • [38] Multiple roles of negative thermal expansion material for high-performance fully-air processed perovskite solar cells
    Zhang, Wenyuan
    He, Lang
    Zhou, Yongxiao
    Tang, Dongyan
    Ding, Bin
    Zhou, Chang
    Dyson, Paul J.
    Nazeeruddin, Mohammad Khaja
    Li, Xin
    CHEMICAL ENGINEERING JOURNAL, 2023, 457
  • [39] Enhanced Performance and Stability of Perovskite Solar Cells Using NH4I Interfacial Modifier
    Zheng, Haiying
    Liu, Guozhen
    Zhu, Liangzheng
    Ye, Jiajiu
    Zhang, Xuhui
    Alsaedi, Ahmed
    Hayat, Tasawar
    Pan, Xu
    Dai, Songyuan
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (46) : 41006 - 41013
  • [40] Enhanced stability and photovoltaic performance of planar perovskite solar cells through anilinium thiobenzoate interfacial engineering
    Thambidurai, M.
    Febriansyah, Benny
    Foo, Shini
    Harikesh, P. C.
    Ming, Koh Teck
    Mathews, Nripan
    Dang, Cuong
    JOURNAL OF POWER SOURCES, 2020, 479