Reconfiguration of Interfacial and Bulk Energy Band Structure for High-Performance Organic and Thermal-Stability Enhanced Perovskite Solar Cells

被引:18
|
作者
Guo, Yaxiong [1 ,2 ]
Lei, Hongwei [1 ]
Wang, Changlei [3 ,4 ]
Ma, Junjie [2 ]
Chen, Cong [2 ]
Zheng, Xiaolu [2 ]
Yang, Guang [2 ]
Xiong, Liangbin [5 ]
Tan, Zuojun [1 ]
机构
[1] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[3] Soochow Univ, Sch Optoelect Sci & Engn, Suzhou 215006, Peoples R China
[4] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China
[5] Hubei Engn Univ, Sch Phys & Elect Informat Engn, Xiaogan 432000, Peoples R China
来源
SOLAR RRL | 2020年 / 4卷 / 04期
基金
中国国家自然科学基金;
关键词
thermal stability; guanidinium; defects; hydrogen bonding; electron transport layers; EFFICIENT; PLANAR; CATION; GUANIDINIUM; METHYLAMMONIUM; PASSIVATION; LAYER; SNO2;
D O I
10.1002/solr.201900482
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tin oxide (SnO2) offers its advantages in widespread applications that require efficient carrier transport. However, the usages of SnO2 in organic solar cells are hindered because of dangling bonds on the surface of SnO2. Herein, PFN-Br as an interfacial layer to tailor the work function of SnO2 is adopted, making it an ideal candidate for interfacial material in organic electronics. Meanwhile, such an efficient SnO2/PFN-Br electron transport layer (ETL) can also be applied to perovskite devices and achieve competitive efficiency. To eliminate current-voltage hysteresis and improve poor thermodynamic stability of perovskite solar cells (PSCs), 5 mol% of guanidinium iodide (GAI) into the (MA)(x)(FA)(1 - x)PbI3 precursor solution is incorporated, enabling the formation of triple-cation perovskite films with excellent optoelectronic quality and stability. The combination of an SnO2/PFN-Br ETL and GAI doping strategy finally delivers power conversion efficiencies over 21% and negligible current-voltage hysteresis in planar PSCs. These improvements arise from the strong hydrogen bonding caused by the incorporation of GA(+). It can stiffen the inorganic Pb-I lattice of the unit cell and restrain the formation of iodine vacancies defects. Moreover, the strong hydrogen bonding can immobilize iodide ion and thus enhance the thermal stability of the corresponding device.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Rapid advances enabling high-performance inverted perovskite solar cells
    Jiang, Qi
    Zhu, Kai
    NATURE REVIEWS MATERIALS, 2024, 9 (06): : 399 - 419
  • [22] Minimizing interfacial energy losses via fluorination strategy toward high-performance air-fabricated perovskite solar cells
    Han, Xiao
    Liu, Xinxing
    Yu, Yue
    He, Dongmei
    Feng, Jing
    Yi, Jianhong
    Chen, Jiangzhao
    CHEMICAL ENGINEERING JOURNAL, 2024, 501
  • [23] Fully Printed High-Performance Quasi-Two-Dimensional Perovskite Solar Cells via Multifunctional Interfacial Engineering
    Wang, Helin
    Yang, Fu
    Li, Xiaohui
    Zhang, Putao
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (10)
  • [24] Enhanced Thermal Stability of Planar Perovskite Solar Cells Through Triphenylphosphine Interface Passivation
    Thambidurai, M.
    Omer, Mohamed, I
    Shini, Foo
    Dewi, Herlina Arianita
    Jamaludin, Nur Fadilah
    Koh, Teck Ming
    Tang, Xiaohong
    Mathews, Nripan
    Dang, Cuong
    CHEMSUSCHEM, 2022, 15 (08)
  • [25] Efficient Perovskite Solar Cells with Enhanced Thermal Stability by Sulfide Treatment
    Lao, Yinan
    Zhang, Yuqing
    Yang, Shuang
    Zhang, Zehao
    Yu, Wenjin
    Qu, Bo
    Xiao, Lixin
    Chen, Zhijian
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (23) : 27427 - 27434
  • [26] Spatial Distribution Recast for Organic Bulk Heterojunctions for High-Performance All-Inorganic Perovskite/Organic Integrated Solar Cells
    Chen, Weijie
    Li, Dong
    Chen, Shanshan
    Liu, Shuo
    Shen, Yunxiu
    Zeng, Guang
    Zhu, Xiaozhang
    Zhou, Erjun
    Jiang, Lin
    Li, Yaowen
    Li, Yongfang
    ADVANCED ENERGY MATERIALS, 2020, 10 (35)
  • [27] Band Engineering of Perovskite Quantum Dot Solids for High-Performance Solar Cells
    Chen, Jingxuan
    Ye, Lvhao
    Wu, Tai
    Hua, Yong
    Zhang, Xiaoliang
    ADVANCED MATERIALS, 2024, 36 (36)
  • [28] Reconfiguration toward Self-Assembled Monolayer Passivation for High-Performance Perovskite Solar Cells
    Chen, Zijing
    Li, Yiming
    Liu, Zhenghao
    Shi, Jiangjian
    Yu, Bingcheng
    Tan, Shan
    Cui, Yuqi
    Tan, Chengyu
    Tian, Fubo
    Wu, Huijue
    Luo, Yanhong
    Li, Dongmei
    Meng, Qingbo
    ADVANCED ENERGY MATERIALS, 2023, 13 (03)
  • [29] Enhanced Performance and Stability of Fully Printed Perovskite Solar Cells and Modules by Ternary Additives under High Humidity
    Srisamran, Nirachawadee
    Sudchanham, Jutarat
    Sriprachuabwong, Chakrit
    Srisawad, Kasempong
    Pakawatpanurut, Pasit
    Lohawet, Khathawut
    Kumnorkaew, Pisist
    Krajangsang, Taweewat
    Tuantranont, Adisorn
    ENERGY & FUELS, 2023, 37 (08) : 6049 - 6061
  • [30] Multifunctional Perylenediimide-Based Cathode Interfacial Materials for High-Performance Inverted Perovskite Solar Cells
    Wu, Tao
    Wang, Daizhe
    Lu, Yi
    Zheng, Zhi
    Guo, Fengyun
    Ye, Tengling
    Gao, Shiyong
    Zhang, Yong
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) : 13657 - 13665