Reconfiguration of Interfacial and Bulk Energy Band Structure for High-Performance Organic and Thermal-Stability Enhanced Perovskite Solar Cells

被引:18
|
作者
Guo, Yaxiong [1 ,2 ]
Lei, Hongwei [1 ]
Wang, Changlei [3 ,4 ]
Ma, Junjie [2 ]
Chen, Cong [2 ]
Zheng, Xiaolu [2 ]
Yang, Guang [2 ]
Xiong, Liangbin [5 ]
Tan, Zuojun [1 ]
机构
[1] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[3] Soochow Univ, Sch Optoelect Sci & Engn, Suzhou 215006, Peoples R China
[4] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China
[5] Hubei Engn Univ, Sch Phys & Elect Informat Engn, Xiaogan 432000, Peoples R China
来源
SOLAR RRL | 2020年 / 4卷 / 04期
基金
中国国家自然科学基金;
关键词
thermal stability; guanidinium; defects; hydrogen bonding; electron transport layers; EFFICIENT; PLANAR; CATION; GUANIDINIUM; METHYLAMMONIUM; PASSIVATION; LAYER; SNO2;
D O I
10.1002/solr.201900482
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tin oxide (SnO2) offers its advantages in widespread applications that require efficient carrier transport. However, the usages of SnO2 in organic solar cells are hindered because of dangling bonds on the surface of SnO2. Herein, PFN-Br as an interfacial layer to tailor the work function of SnO2 is adopted, making it an ideal candidate for interfacial material in organic electronics. Meanwhile, such an efficient SnO2/PFN-Br electron transport layer (ETL) can also be applied to perovskite devices and achieve competitive efficiency. To eliminate current-voltage hysteresis and improve poor thermodynamic stability of perovskite solar cells (PSCs), 5 mol% of guanidinium iodide (GAI) into the (MA)(x)(FA)(1 - x)PbI3 precursor solution is incorporated, enabling the formation of triple-cation perovskite films with excellent optoelectronic quality and stability. The combination of an SnO2/PFN-Br ETL and GAI doping strategy finally delivers power conversion efficiencies over 21% and negligible current-voltage hysteresis in planar PSCs. These improvements arise from the strong hydrogen bonding caused by the incorporation of GA(+). It can stiffen the inorganic Pb-I lattice of the unit cell and restrain the formation of iodine vacancies defects. Moreover, the strong hydrogen bonding can immobilize iodide ion and thus enhance the thermal stability of the corresponding device.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] High-Performance Ternary Perovskite-Organic Solar Cells
    Zhu, Tao
    Shen, Lening
    Xun, Sangni
    Sarmiento, Julio S.
    Yang, Yongrui
    Zheng, Luyao
    Li, Hong
    Wang, He
    Bredas, Jean-Luc
    Gong, Xiong
    ADVANCED MATERIALS, 2022, 34 (13)
  • [12] Molecular Structure Tailoring of Organic Spacers for High-Performance Ruddlesden-Popper Perovskite Solar Cells
    Liu, Pengyun
    Li, Xuejin
    Cai, Tonghui
    Xing, Wei
    Yang, Naitao
    Arandiyan, Hamidreza
    Shao, Zongping
    Wang, Shaobin
    Liu, Shaomin
    NANO-MICRO LETTERS, 2025, 17 (01)
  • [13] Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells
    Yao, Kai
    Zhong, Hongjie
    Liu, Zhiliang
    Xiong, Min
    Leng, Shifeng
    Zhang, Jie
    Xu, Yun-xiang
    Wang, Wenyan
    Zhou, Lang
    Huang, Haitao
    Jen, Alex K. -Y.
    ACS NANO, 2019, 13 (05) : 5397 - 5409
  • [14] Enhanced Performance and Stability of Planar Perovskite Solar Cells by Interfacial Engineering using Fluorinated Aliphatic Amines
    Zhao, Shuai
    Zhao, Baohua
    Chen, Yanli
    Yang, Guangwu
    Li, Xiyou
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09): : 6230 - 6236
  • [15] Multifunctional Thiophene-Based Interfacial Passivating Layer for High-Performance Perovskite Solar Cells
    Bao, Jiahui
    Wang, Peng
    Zhang, Weihao
    Li, Benyi
    Wu, Xiaoping
    Xu, Lingbo
    Lin, Ping
    He, Haiyan
    Yu, Xuegong
    Cui, Can
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) : 6823 - 6832
  • [16] Multifunctional Hybrid Interfacial Layers for High-Performance Inverted Perovskite Solar Cells
    Niu, Benfang
    Liu, Haoran
    Huang, Yanchun
    Gu, Emely
    Yan, Minxing
    Shen, Ziqiu
    Yan, Kangrong
    Yan, Buyi
    Yao, Jizhong
    Fang, Yanjun
    Chen, Hongzheng
    Li, Chang-Zhi
    ADVANCED MATERIALS, 2023, 35 (21)
  • [17] Molecular Interaction Modulates Crystallization and Defects of Perovskite Films for High-Performance Solar Cells
    Fan, Fangfang
    Li, Zhipeng
    Tian, Haodong
    Zhu, Mingzhe
    Zhang, Linbao
    Wen, Lirong
    Zhou, Zhongmin
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (09) : 10572 - 10580
  • [18] Amidinium additives for high-performance perovskite solar cells
    Ma, Yue
    Liu, Na
    Zai, Huachao
    Fan, Rundong
    Kang, Jiaqian
    Yang, Xiaoyan
    Pei, Fengtao
    Zhou, Wentao
    Wang, Hao
    Chen, Yihua
    Wang, Lina
    Hong, Jiawang
    Bai, Yang
    Zhou, Huanping
    Chen, Qi
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (07) : 3506 - 3512
  • [19] Carbon Nanoparticles in High-Performance Perovskite Solar Cells
    Yavari, Mozhgan
    Mazloum-Ardakani, Mohammad
    Gholipour, Somayeh
    Marinova, Nevena
    Delgado, Juan Luis
    Turren-Cruz, Silver-Hamill
    Domanski, Konrad
    Taghavinia, Nima
    Saliba, Michael
    Graetzel, Michael
    Hagfeldt, Anders
    Tress, Wolfgang
    ADVANCED ENERGY MATERIALS, 2018, 8 (12)
  • [20] Buried interface passivation strategies for high-performance perovskite solar cells
    Wang, Ya
    Han, Meidouxue
    Wang, Rongbo
    Zhao, Juntao
    Zhang, Jiawei
    Ren, Huizhi
    Hou, Guofu
    Ding, Yi
    Zhao, Ying
    Zhang, Xiaodan
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (16) : 8573 - 8598