Reconfiguration of Interfacial and Bulk Energy Band Structure for High-Performance Organic and Thermal-Stability Enhanced Perovskite Solar Cells

被引:18
|
作者
Guo, Yaxiong [1 ,2 ]
Lei, Hongwei [1 ]
Wang, Changlei [3 ,4 ]
Ma, Junjie [2 ]
Chen, Cong [2 ]
Zheng, Xiaolu [2 ]
Yang, Guang [2 ]
Xiong, Liangbin [5 ]
Tan, Zuojun [1 ]
机构
[1] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[3] Soochow Univ, Sch Optoelect Sci & Engn, Suzhou 215006, Peoples R China
[4] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China
[5] Hubei Engn Univ, Sch Phys & Elect Informat Engn, Xiaogan 432000, Peoples R China
来源
SOLAR RRL | 2020年 / 4卷 / 04期
基金
中国国家自然科学基金;
关键词
thermal stability; guanidinium; defects; hydrogen bonding; electron transport layers; EFFICIENT; PLANAR; CATION; GUANIDINIUM; METHYLAMMONIUM; PASSIVATION; LAYER; SNO2;
D O I
10.1002/solr.201900482
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tin oxide (SnO2) offers its advantages in widespread applications that require efficient carrier transport. However, the usages of SnO2 in organic solar cells are hindered because of dangling bonds on the surface of SnO2. Herein, PFN-Br as an interfacial layer to tailor the work function of SnO2 is adopted, making it an ideal candidate for interfacial material in organic electronics. Meanwhile, such an efficient SnO2/PFN-Br electron transport layer (ETL) can also be applied to perovskite devices and achieve competitive efficiency. To eliminate current-voltage hysteresis and improve poor thermodynamic stability of perovskite solar cells (PSCs), 5 mol% of guanidinium iodide (GAI) into the (MA)(x)(FA)(1 - x)PbI3 precursor solution is incorporated, enabling the formation of triple-cation perovskite films with excellent optoelectronic quality and stability. The combination of an SnO2/PFN-Br ETL and GAI doping strategy finally delivers power conversion efficiencies over 21% and negligible current-voltage hysteresis in planar PSCs. These improvements arise from the strong hydrogen bonding caused by the incorporation of GA(+). It can stiffen the inorganic Pb-I lattice of the unit cell and restrain the formation of iodine vacancies defects. Moreover, the strong hydrogen bonding can immobilize iodide ion and thus enhance the thermal stability of the corresponding device.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells
    Zhang, Moyao
    Chen, Qi
    Xue, Rongming
    Zhan, Yu
    Wang, Cheng
    Lai, Junqi
    Yang, Jin
    Lin, Hongzhen
    Yao, Jianlin
    Li, Yaowen
    Chen, Liwei
    Li, Yongfang
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [2] Surface Reconstruction of a Perovskite Film by an Organic Salt for High-Performance Solar Cells with Improved Stability
    Jung, Mi-Hee
    LANGMUIR, 2023, 39 (50) : 18276 - 18288
  • [3] Design of surface termination for high-performance perovskite solar cells
    Yang, Yan
    Zhao, Wangen
    Yang, Tengteng
    Liu, Jiali
    Zhang, Jingru
    Fang, Yuankun
    Liu, Shengzhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (41) : 23597 - 23606
  • [4] Manipulating the Interfacial Dipole Toward High-Performance Perovskite Solar Cells via Conjugated Organic Ammonium
    Liu, Chen
    Shi, Pengju
    Li, Chongyang
    Huang, Wenchao
    Yang, Xueyuan
    Yavuz, Ilhan
    Xue, Jingjing
    Liu, Ruzhang
    Wang, Rui
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (23): : 8923 - 8929
  • [5] High-performance perovskite solar cells based on passivating interfacial and intergranular defects
    Liu, Pengfei
    Liu, Zhiyong
    Qin, Chaochao
    He, Tingwei
    Li, Bingxin
    Ma, Lin
    Shaheen, Kausar
    Yang, Jien
    Yang, Haigang
    Liu, Hairui
    Liu, Kaikai
    Yuan, Mingjian
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 212
  • [6] Tailoring the Energy Band Structure and Interfacial Morphology of the ETL via Controllable Nanocluster Size Achieves High-Performance Planar Perovskite Solar Cells
    Wang, Shaofu
    Sang, Hongqian
    Jiang, Yun
    Wang, Yuan
    Xiong, Yi
    Yu, Yanhua
    He, Rongxiang
    Chen, Bolei
    Zhao, Xingzhong
    Liu, Yumin
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (41) : 48555 - 48568
  • [7] A Graded Redox Interfacial Modifier for High-Performance Perovskite Solar Cells
    Qi, Wenjing
    Liu, Zhe
    Xie, Xinrui
    Zhang, Yijia
    Yu, Minhui
    Zhang, Shi-Yuan
    Zhao, Baodan
    Zhang, Meng
    Liu, Bo
    Di, Dawei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (50)
  • [8] Universal Surface Passivation of Organic-Inorganic Halide Perovskite Films by Tetraoctylammonium Chloride for High-Performance and Stable Perovskite Solar Cells
    Abate, Seid Yimer
    Zhang, Qiqi
    Qi, Yifang
    Nash, Jawnaye
    Gollinger, Kristine
    Zhu, Xianchun
    Han, Fengxiang
    Pradhan, Nihar
    Dai, Qilin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (24) : 28044 - 28059
  • [9] ?-Conjugated zwitterion for dual-interfacial modification in high-performance perovskite solar cells
    Hu, Zhao
    Yang, Biao
    Miao, Jingsheng
    Li, Tingting
    Ali, Muhammad Umair
    Yan, Chaoyi
    Goto, Osamu
    Shen, Clifton
    Xu, Baomin
    Meng, Hong
    Yan, Feng
    CHEMICAL ENGINEERING JOURNAL, 2021, 416
  • [10] π-Conjugated aromatic amino molecule for interfacial modification in high-performance perovskite solar cells
    Xiang, Ling
    Cao, Yunxuan
    Sun, Juanjuan
    Li, Dongyang
    Liu, Hongliang
    Gao, Fangliang
    Chen, Changsong
    Li, Shuti
    SURFACES AND INTERFACES, 2024, 44