Promotion on electrochemical performance of a cation deficient SrCo0.7Nb0.1Fe0.2O3-δ perovskite cathode for intermediate-temperature solid oxide fuel cells

被引:44
|
作者
Ding, Liming [1 ,2 ]
Wang, Lixi [3 ]
Ding, Dong [4 ]
Zhang, Shihua [1 ,2 ]
Ding, Xifeng [1 ,2 ]
Yuan, Guoliang [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Key Lab Adv Micro & Nano Mat & Technol Jiang Prov, Nanjing 210094, Jiangsu, Peoples R China
[3] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
[4] Idaho Natl Lab, POB 1625,MS 3732, Idaho Falls, ID 83415 USA
基金
中国国家自然科学基金;
关键词
Solid oxide fuel cells; Cathode; Oxygen reduction reaction; Cation deficiency; A-SITE DEFICIENCY; ELECTRICAL-PROPERTIES; OXYGEN REDUCTION; IMPEDANCE SPECTROSCOPY; REACTION-MECHANISMS; POTENTIAL CATHODE; COBALT; CONDUCTIVITY; ELECTRODE; LA1-XSRXCO1-YFEYO3;
D O I
10.1016/j.jpowsour.2017.04.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid oxide fuel cells (SOFCs) offer great promise for the most efficient and cost-effective conversion to electricity of a wide variety of fuels. The cathode materials with high electro-catalytic activity for oxygen reduction reaction is vital to the development of commercially-viable SOFCs to be operated at reduced temperatures. In present study, cobalt-based perovskite oxides SrxCo0.7Nb0.1Fe0.2O3-delta (SCNF, x = 0.95 and 1) were comparatively investigated as promising cathode materials for intermediate-temperature SOFCs. The SCNF compounds with a slight Sr deficiency (S0.95CNF) exhibited single phase of primitive cubic structure with Pm-3m symmetry. A small Sr deficiency is demonstrated to greatly enhance the electrochemical performance of stoichiometric SCNF cathode due to significantly increased oxygen vacancy. The polarization resistance of S0.95CNF at 700 degrees C was 0.11 Omega cm(2), only about 61% of SCNF. The rate limiting step for oxygen reduction reaction (ORR) is demonstrated to be oxygen ion transfer within the bulk electrode and/or from electrode to electrolyte through the triple phase boundary. Full cells with the SCNF cathode present good performance and stable output at reduced temperatures, indicating the great potential for enhanced performance of Co-based cathodes with A-site deficiency. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 50 条
  • [31] Characterization of SrFe0.9-xCuxMo0.1O3-δ (x=0, 0.1 and 0.2) as cathode for intermediate-temperature solid oxide fuel cells
    Yao, Chuangang
    Yang, Jixing
    Zhang, Haixia
    Chen, Sigeng
    Meng, Jian
    Cai, Kedi
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (04) : 5337 - 5346
  • [32] Electrochemical performance of PrBaCo2O5+δ layered perovskite as an intermediate-temperature solid oxide fuel cell cathode
    Zhu, Chengjun
    Liu, Xiaomei
    Yi, Cuishan
    Yan, Duanting
    Su, Wenhui
    JOURNAL OF POWER SOURCES, 2008, 185 (01) : 193 - 196
  • [33] Characterization of cation-ordered perovskite oxide LaBaCo2O5+δ as cathode of intermediate-temperature solid oxide fuel cells
    Pang, Shengli
    Jiang, Xuening
    Li, Xiangnan
    Su, Zhixian
    Xu, Hongxia
    Xu, Qiuli
    Chen, Chonglin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (08) : 6836 - 6843
  • [34] Effects of humidity on Ba0.9Co0.7Fe0.2Nb0.1O3-δ cathode performance and durability of Solid Oxide Fuel Cells
    Yang, Zhibin
    Liu, Yahui
    Chen, Yu
    Wang, Jingle
    Han, Zongying
    Zhu, Yanmin
    Han, Minfang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (10) : 6997 - 7002
  • [35] Ce-doped promotes the phase stability and electrochemical performance of SrCoO3-δ cathode for intermediate-temperature solid oxide fuel cells
    Li, Shuting
    Liu, Yuanyuan
    Cai, Changkun
    Xue, Ke
    Bian, Liuzhen
    An, Shengli
    JOURNAL OF POWER SOURCES, 2024, 592
  • [36] Evaluation of Ba0.5Sr0.5Fe0.9Nb0.1O3-δ cathode for intermediate-temperature solid oxide fuel cells: Theoretical calculation and experiment
    Wang, Yinxiao
    Liu, Yaowei
    He, Xiaoyu
    Chen, Zhigang
    Lu, Chunling
    Wang, Biao
    Niu, Bingbing
    Liu, Gaobin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 112 : 399 - 407
  • [37] Electrochemical Performance of Cobalt-Free Nb and Ta Co-Doped Perovskite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells
    Liang, Fengli
    Wang, Zaixing
    Wang, Zhuoran
    Mao, Junkui
    Sunarso, Jaka
    CHEMELECTROCHEM, 2017, 4 (09): : 2366 - 2372
  • [38] Interface engineering to improve electrochemical performance of intermediate-temperature solid oxide fuel cells
    Yoo, Hyun Sik
    Kim, Seo Ju
    Megra, Yonas Tsegaye
    Lee, Jongseo
    Suk, Ji Won
    Lee, Wonyoung
    APPLIED SURFACE SCIENCE, 2023, 639
  • [39] Preparation and electrochemical performance of cobalt-free cathode material Ba0.5Sr0.5Fe0.9Nb0.1O3−δ for intermediate-temperature solid oxide fuel cells
    Wen Long
    Huawei Xu
    Tianmin He
    Chemical Research in Chinese Universities, 2014, 30 : 806 - 810
  • [40] Layered Perovskite GdBaCuCoO5+δ Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells
    Zhou, Qingjun
    Zhang, Yingchun
    Shen, Yu
    He, Tianmin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (05) : B628 - B632