Defects of multi-walled carbon nanotubes as active sites for benzene hydroxylation to phenol in the presence of H2O2

被引:70
作者
Song, Shaoqing [1 ]
Yang, Hongxiao [1 ]
Rao, Richuan [1 ]
Liu, Huade [1 ]
Zhang, Aimin [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem MOE, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-walled carbon nanotubes; Defects; Hydroxylation of benzene; Phenol; CATALYTIC-ACTIVITY; DIAMETER; OXIDATION; CHEMISTRY;
D O I
10.1016/j.catcom.2010.02.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multi-walled carbon nanotubes (MWCNTs) with different defect densities have been obtained by heating and ultrasonication in nitric acid solution and used directly as catalyst for the hydroxylation of benzene in the presence of H2O2. The results showed that the catalytic activity increased with increasing defect densities of MWCNTs and had no direct relationship with the MWCNT diameters and oxygen-containing groups. The defects produced by heating and ultrasonication exhibited the same catalytic activities in hydroxylation reaction. The catalysis reaction was proposed to occur via active oxygen attacking benzene process. The active oxygen was generated by H2O2 decomposition on the defect of MWCNTs with dangling incomplete bonding. And cyclic voltammetry tests also showed that the current density of H2O2 decomposition increased along with increasing MWCNT defect densities. Thus, highly defective MWCNTs could accelerate the hydroxylation of benzene. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:783 / 787
页数:5
相关论文
共 23 条
[1]   Effect of pre-treatment on physico-chemical properties and stability of carbon nanotubes supported iron Fischer-Tropsch catalysts [J].
Abbaslou, Reza M. Malek ;
Tavasoli, Ahmad ;
Dalai, Ajay K. .
APPLIED CATALYSIS A-GENERAL, 2009, 355 (1-2) :33-41
[2]   Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes [J].
Antunes, E. F. ;
Lobo, A. O. ;
Corat, E. J. ;
Trava-Airoldi, V. J. .
CARBON, 2007, 45 (05) :913-921
[3]   The role of mechanically induced defects in carbon nanotubes to modify the properties of electrodes for PEM fuel cell [J].
Centi, G. ;
Gangeri, M. ;
Fiorello, M. ;
Perathoner, S. ;
Amadou, J. ;
Begin, D. ;
Ledoux, M. J. ;
Pham-Huu, C. ;
Schuster, M. E. ;
Su, D. S. ;
Tessonnier, J. -P. ;
Schloegi, R. .
CATALYSIS TODAY, 2009, 147 (3-4) :287-299
[4]   Chemisorption of acetone on carbon nanotubes [J].
Chakrapani, N ;
Zhang, YMM ;
Nayak, SK ;
Moore, JA ;
Carroll, DL ;
Choi, YY ;
Ajayan, PM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (35) :9308-9311
[5]   Defects in carbon nanotubes [J].
Charlier, JC .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1063-1069
[6]   Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst [J].
Chen, Wei ;
Fan, Zhongli ;
Pan, Xiulian ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (29) :9414-9419
[7]   A facile synthesis of palladium nanoparticles supported on functional carbon nanotubes and its novel catalysis for ethanol electrooxidation [J].
Chen, Xiao-mei ;
Lin, Zhi-jie ;
jia, Tian-tian ;
Cai, Zhi-min ;
Huang, Xiao-li ;
Jiang, Ya-qi ;
Chen, Xi ;
Chen, Guo-nan .
ANALYTICA CHIMICA ACTA, 2009, 650 (01) :54-58
[8]   Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation [J].
Du, H. -Y. ;
Wang, C. -H. ;
Hsu, H. -C. ;
Chang, S. -T. ;
Chen, U. -S. ;
Yen, S. C. ;
Chen, L. C. ;
Shih, H. -C. ;
Chen, K. H. .
DIAMOND AND RELATED MATERIALS, 2008, 17 (4-5) :535-541
[9]   TOPOLOGICAL AND SP3 DEFECT STRUCTURES IN NANOTUBES [J].
EBBESEN, TW ;
TAKADA, T .
CARBON, 1995, 33 (07) :973-978
[10]   On the influence of diameter and length on the properties of armchair single-walled carbon nanotubes: A theoretical chemistry approach [J].
Galano, Annia .
CHEMICAL PHYSICS, 2006, 327 (01) :159-170