Global regularity of solutions of 2D Boussinesq equations with fractional diffusion

被引:56
作者
Xu, Xiaojing [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
关键词
Fractional diffusion; Regularity; Global existence; Boussinesq equations; BLOW-UP CRITERION; GENERALIZED MHD EQUATIONS; LOCAL EXISTENCE; WELL-POSEDNESS;
D O I
10.1016/j.na.2009.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this work is to study the Boussinesq equations for an incompressible fluid in R(2). with diffusion modeled by fractional Laplacian. The existence, the uniqueness and the regularity of solution has been proved. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:677 / 681
页数:5
相关论文
共 18 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]  
Cannon J., 1980, Lecture Notes in Math., V771, P129
[3]   Local existence and blow-up criterion of Holder continuous solutions of the Boussinesq equations [J].
Chae, D ;
Kim, SK ;
Nam, HS .
NAGOYA MATHEMATICAL JOURNAL, 1999, 155 :55-80
[4]   Local existence and blow-up criterion for the Boussinesq equations [J].
Chae, D ;
Nam, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :935-946
[5]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[6]   On squirt singularities in hydrodynamics [J].
Córdoba, D ;
Fefferman, C ;
De la LLave, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (01) :204-213
[7]  
Guo B., 1989, ACTA MATH APPL SIN-E, V5, P201
[8]  
Hmidi T., 2007, GLOBAL WELL POSEDNES
[9]  
Hmidi T., 2006, GLOBAL WELL POSEDNES
[10]  
Hou TY, 2005, DISCRETE CONT DYN-A, V12, P1