Numerical approach to the Schroumldinger equation in momentum space

被引:6
作者
Karr, William A. [1 ]
Jamell, Christopher R. [1 ]
Joglekar, Yogesh N. [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA
基金
美国国家科学基金会;
关键词
integral equations; matrix algebra; physics education; quantum theory; Schrodinger equation; teaching; 2; DIMENSIONS; SCHRODINGER-EQUATION; QUANTUM-MECHANICS; HYDROGEN-ATOM; SCATTERING; MODEL;
D O I
10.1119/1.3272021
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The treatment of the time-independent Schroumldinger equation in real space is an indispensable part of introductory quantum mechanics. In contrast, the Schroumldinger equation in momentum space is an integral equation that is not readily amenable to an analytical solution and is rarely taught. We present a numerical approach to the Schroumldinger equation in momentum space. After a suitable discretization process, we obtain the Hamiltonian matrix and diagonalize it numerically. By considering a few examples, we show that this approach is ideal for exploring bound states in a localized potential and complements the traditional (analytical or numerical) treatment of the Schroumldinger equation in real space.
引用
收藏
页码:407 / 411
页数:5
相关论文
共 50 条
  • [31] Numerical analysis of a space-time continuous Galerkin method for the nonlinear Sobolev equation
    Zhao, Zhihui
    Li, Hong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [32] Analytical solutions of Schrodinger equation for the diatomic molecular potentials with any angular momentum
    Akcay, Huseyin
    Sever, Ramazan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (07) : 1973 - 1987
  • [33] Evolution of structure functions in momentum space
    Lappi, Tuomas
    Maentysaari, Heikki
    Paukkunen, Hannu
    Tevio, Mirja
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (01):
  • [34] Singularity-Free Two-Body Equation with Confining Interactions in Momentum Space
    Stadler, Alfred
    Leitao, Sofia
    Pena, M. T.
    Biernat, Elmar P.
    FEW-BODY SYSTEMS, 2014, 55 (8-10) : 701 - 704
  • [35] Global existence and scattering for a class of nonlinear fourth-order Schrodinger equation below the energy space
    Van Duong Dinh
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 172 : 115 - 140
  • [36] Momentum space orthogonal polynomial projection quantization
    Handy, C. R.
    Vrinceanu, D.
    Marth, C. B.
    Gupta, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (14)
  • [37] Lagrange-mesh calculations in momentum space
    Lacroix, Gwendolyn
    Semay, Claude
    Buisseret, Fabien
    PHYSICAL REVIEW E, 2012, 86 (02):
  • [38] Coulomb problem in momentum space without screening
    Upadhyay, N. J.
    Eremenko, V.
    Hlophe, L.
    Nunes, F. M.
    Elster, Ch.
    Arbanas, G.
    Escher, J. E.
    Thompson, I. J.
    PHYSICAL REVIEW C, 2014, 90 (01):
  • [39] Electron in three-dimensional momentum space
    Bacchetta, Alessandro
    Mantovani, Luca
    Pasquini, Barbara
    PHYSICAL REVIEW D, 2016, 93 (01):
  • [40] Analytical and numerical treatments for the Kaup-Newell dynamical equation
    Al Qarni, A. A.
    Alshaery, A. A.
    Bakodah, H. O.
    Banaja, M. A.
    Mohammed, A. S. H. F.
    RESULTS IN PHYSICS, 2020, 19