Numerical approach to the Schroumldinger equation in momentum space

被引:6
作者
Karr, William A. [1 ]
Jamell, Christopher R. [1 ]
Joglekar, Yogesh N. [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA
基金
美国国家科学基金会;
关键词
integral equations; matrix algebra; physics education; quantum theory; Schrodinger equation; teaching; 2; DIMENSIONS; SCHRODINGER-EQUATION; QUANTUM-MECHANICS; HYDROGEN-ATOM; SCATTERING; MODEL;
D O I
10.1119/1.3272021
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The treatment of the time-independent Schroumldinger equation in real space is an indispensable part of introductory quantum mechanics. In contrast, the Schroumldinger equation in momentum space is an integral equation that is not readily amenable to an analytical solution and is rarely taught. We present a numerical approach to the Schroumldinger equation in momentum space. After a suitable discretization process, we obtain the Hamiltonian matrix and diagonalize it numerically. By considering a few examples, we show that this approach is ideal for exploring bound states in a localized potential and complements the traditional (analytical or numerical) treatment of the Schroumldinger equation in real space.
引用
收藏
页码:407 / 411
页数:5
相关论文
共 50 条
  • [21] Conical intersections in triplet excited states of methylene from the anti-Hermitian contracted Schroumldinger equation
    Snyder, James W., Jr.
    Rothman, Adam E.
    Foley, Jonathan J.
    Mazziotti, David A.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
  • [22] Numerical simulations for the energy-supercritical nonlinear wave equation
    Murphy, Jason
    Zhang, Yanzhi
    NONLINEARITY, 2020, 33 (11) : 6195 - 6220
  • [23] Two-dimensional paradigm for symmetry breaking: The nonlinear Schroumldinger equation with a four-well potential
    Wang, C.
    Theocharis, G.
    Kevrekidis, P. G.
    Whitaker, N.
    Law, K. J. H.
    Frantzeskakis, D. J.
    Malomed, B. A.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [24] Numerical simulation of fractal wave propagation of a multi-dimensional nonlinear fractional-in-space Schrodinger equation
    Tang, Wei-Fang
    Wang, Yu-Lan
    Li, Zhi-Yuan
    PHYSICA SCRIPTA, 2023, 98 (04)
  • [25] Nonequilibrium, steady-state electron transport with N-representable density matrices from the anti-Hermitian contracted Schroumldinger equation
    Rothman, Adam E.
    Mazziotti, David A.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (10)
  • [26] An adaptive FEM with ITP approach for steady Schrodinger equation
    Kuang, Yang
    Hu, Guanghui
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 187 - 201
  • [27] Open-shell energies and two-electron reduced density matrices from the anti-Hermitian contracted Schroumldinger equation: A spin-coupled approach
    Rothman, Adam E.
    Foley, Jonathan J.
    Mazziotti, David A.
    PHYSICAL REVIEW A, 2009, 80 (05):
  • [28] Numerical Solutions for Space Fractional Schrödinger Equation Through Semiclassical Approximation
    Gao, Yijin
    Sacks, Paul
    Luo, Songting
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [29] Numerical analysis for time-fractional Schrodinger equation on two space dimensions
    Zhang, Jun
    Wang, JinRong
    Zhou, Yong
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [30] Analytical versus numerical solutions of the nonlinear fractional time-space telegraph equation
    Khater, Mostafa M. A.
    Lu, Dianchen
    MODERN PHYSICS LETTERS B, 2021, 35 (19):