Adaptive robust principal component analysis

被引:27
|
作者
Liu, Yang [1 ]
Gao, Xinbo [1 ]
Gao, Quanxue [1 ]
Shao, Ling [2 ]
Han, Jungong [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] Univ Warwick, WMG Data Sci, Coventry CV4 7AL, W Midlands, England
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
RPCA; Flexibility; Adaptively; PCA; FACTORIZATION;
D O I
10.1016/j.neunet.2019.07.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robust Principal Component Analysis (RPCA) is a powerful tool in machine learning and data mining problems. However, in many real-world applications, RPCA is unable to well encode the intrinsic geometric structure of data, thereby failing to obtain the lowest rank representation from the corrupted data. To cope with this problem, most existing methods impose the smooth manifold, which is artificially constructed by the original data. This reduces the flexibility of algorithms. Moreover, the graph, which is artificially constructed by the corrupted data, is inexact and does not characterize the true intrinsic structure of real data. To tackle this problem, we propose an adaptive RPCA (ARPCA) to recover the clean data from the high-dimensional corrupted data. Our proposed model is advantageous due to: (1) The graph is adaptively constructed upon the clean data such that the system is more flexible. (2) Our model simultaneously learns both clean data and similarity matrix that determines the construction of graph. (3) The clean data has the lowest-rank structure that enforces to correct the corruptions. Extensive experiments on several datasets illustrate the effectiveness of our model for clustering and low-rank recovery tasks. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 50 条
  • [21] Deciphering Latent Uncertainty Sources with Principal Component Analysis for Adaptive Robust Optimization
    Ning, Chao
    You, Fengqi
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2019, 46 : 1189 - 1194
  • [22] Inductive Robust Principal Component Analysis
    Bao, Bing-Kun
    Liu, Guangcan
    Xu, Changsheng
    Yan, Shuicheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (08) : 3794 - 3800
  • [23] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [24] Robust Principal Component Analysis on Graphs
    Shahid, Nauman
    Kalofolias, Vassilis
    Bresson, Xavier
    Bronsteint, Michael
    Vandergheynst, Pierre
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2812 - 2820
  • [25] Adaptive Weighted Sparse Principal Component Analysis for Robust Unsupervised Feature Selection
    Yi, Shuangyan
    He, Zhenyu
    Jing, Xiao-Yuan
    Li, Yi
    Cheung, Yiu-Ming
    Nie, Feiping
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (06) : 2153 - 2163
  • [26] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [27] Bayesian Robust Principal Component Analysis
    Ding, Xinghao
    He, Lihan
    Carin, Lawrence
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3419 - 3430
  • [28] A review on robust principal component analysis
    Lee, Eunju
    Park, Mingyu
    Kim, Choongrak
    KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 327 - 333
  • [29] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [30] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14