Adaptive robust principal component analysis

被引:27
作者
Liu, Yang [1 ]
Gao, Xinbo [1 ]
Gao, Quanxue [1 ]
Shao, Ling [2 ]
Han, Jungong [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] Univ Warwick, WMG Data Sci, Coventry CV4 7AL, W Midlands, England
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
RPCA; Flexibility; Adaptively; PCA; FACTORIZATION;
D O I
10.1016/j.neunet.2019.07.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robust Principal Component Analysis (RPCA) is a powerful tool in machine learning and data mining problems. However, in many real-world applications, RPCA is unable to well encode the intrinsic geometric structure of data, thereby failing to obtain the lowest rank representation from the corrupted data. To cope with this problem, most existing methods impose the smooth manifold, which is artificially constructed by the original data. This reduces the flexibility of algorithms. Moreover, the graph, which is artificially constructed by the corrupted data, is inexact and does not characterize the true intrinsic structure of real data. To tackle this problem, we propose an adaptive RPCA (ARPCA) to recover the clean data from the high-dimensional corrupted data. Our proposed model is advantageous due to: (1) The graph is adaptively constructed upon the clean data such that the system is more flexible. (2) Our model simultaneously learns both clean data and similarity matrix that determines the construction of graph. (3) The clean data has the lowest-rank structure that enforces to correct the corruptions. Extensive experiments on several datasets illustrate the effectiveness of our model for clustering and low-rank recovery tasks. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 50 条
  • [1] Robust adaptive algorithms for fast principal component analysis
    Bekhtaoui, Zineb
    Abed-Meraim, Karim
    Meche, Abdelkrim
    DIGITAL SIGNAL PROCESSING, 2022, 127
  • [2] Adaptive Rank Estimate in Robust Principal Component Analysis
    Xu, Zhengqin
    He, Rui
    Xie, Shoulie
    Wu, Shiqian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 6573 - 6582
  • [3] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    NEUROCOMPUTING, 2020, 391 : 119 - 128
  • [4] Online Tensor Robust Principal Component Analysis
    Salut, Mohammad M.
    Anderson, David, V
    IEEE ACCESS, 2022, 10 : 69354 - 69363
  • [5] Bayesian Robust Principal Component Analysis with Adaptive Singular Value Penalty
    Cui, Kaiyan
    Wang, Guan
    Song, Zhanjie
    Han, Ningning
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (08) : 4110 - 4135
  • [6] Adaptive Weighted Sparse Principal Component Analysis for Robust Unsupervised Feature Selection
    Yi, Shuangyan
    He, Zhenyu
    Jing, Xiao-Yuan
    Li, Yi
    Cheung, Yiu-Ming
    Nie, Feiping
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (06) : 2153 - 2163
  • [7] Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis
    Rahmani, Mostafa
    Atia, George K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (23) : 6260 - 6275
  • [8] Robust Adaptive Principal Component Analysis Based on Intergraph Matrix for Medical Image Registration
    Leng, Chengcai
    Xiao, Jinjun
    Li, Min
    Zhang, Haipeng
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015
  • [9] Exactly Robust Kernel Principal Component Analysis
    Fan, Jicong
    Chow, Tommy W. S.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (03) : 749 - 761
  • [10] Tensor Robust Principal Component Analysis With Side Information: Models and Applications
    Han, Zhi
    Zhang, Shaojie
    Liu, Zhiyu
    Wang, Yanmei
    Yao, Junping
    Wang, Yao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 3713 - 3725