Adaptive robust principal component analysis

被引:27
作者
Liu, Yang [1 ]
Gao, Xinbo [1 ]
Gao, Quanxue [1 ]
Shao, Ling [2 ]
Han, Jungong [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] Univ Warwick, WMG Data Sci, Coventry CV4 7AL, W Midlands, England
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
RPCA; Flexibility; Adaptively; PCA; FACTORIZATION;
D O I
10.1016/j.neunet.2019.07.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robust Principal Component Analysis (RPCA) is a powerful tool in machine learning and data mining problems. However, in many real-world applications, RPCA is unable to well encode the intrinsic geometric structure of data, thereby failing to obtain the lowest rank representation from the corrupted data. To cope with this problem, most existing methods impose the smooth manifold, which is artificially constructed by the original data. This reduces the flexibility of algorithms. Moreover, the graph, which is artificially constructed by the corrupted data, is inexact and does not characterize the true intrinsic structure of real data. To tackle this problem, we propose an adaptive RPCA (ARPCA) to recover the clean data from the high-dimensional corrupted data. Our proposed model is advantageous due to: (1) The graph is adaptively constructed upon the clean data such that the system is more flexible. (2) Our model simultaneously learns both clean data and similarity matrix that determines the construction of graph. (3) The clean data has the lowest-rank structure that enforces to correct the corruptions. Extensive experiments on several datasets illustrate the effectiveness of our model for clustering and low-rank recovery tasks. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 45 条
[1]  
[Anonymous], FOUND TRENDS MACH LE
[2]  
[Anonymous], 2015, IEEE ICCW 2015
[3]  
[Anonymous], 2009, MATH PROGRAM
[4]  
[Anonymous], 2010, IPAM WORKSH CONT OPT
[5]  
Anton B, 1996, J COMP NEUROL, V368, P229
[6]   Parallel multi-modal background modeling [J].
Bloisi, Domenico D. ;
Pennisi, Andrea ;
Iocchi, Luca .
PATTERN RECOGNITION LETTERS, 2017, 96 :45-54
[7]   Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset [J].
Bouwmans, Thierry ;
Sobral, Andrews ;
Javed, Sajid ;
Jung, Soon Ki ;
Zahzah, El-Hadi .
COMPUTER SCIENCE REVIEW, 2017, 23 :1-71
[8]   Scene background initialization: A taxonomy [J].
Bouwmans, Thierry ;
Maddalena, Lucia ;
Petrosino, Alfredo .
PATTERN RECOGNITION LETTERS, 2017, 96 :3-11
[9]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[10]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)