Local Similarity Siamese Network for Urban Land Change Detection on Remote Sensing Images

被引:33
|
作者
Lee, Haeyun [1 ]
Lee, Kyungsu [1 ]
Kim, Jun Hee [2 ]
Na, Younghwan [1 ]
Park, Juhum [3 ]
Choi, Jihwan P. [4 ]
Hwang, Jae Youn [1 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol, Informat & Commun Engn, Daegu 42988, South Korea
[2] Agcy Def Dev, Daejoen 34186, South Korea
[3] Dabeeo Inc, Seoul 04107, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Aerosp Engn, Daejoen 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Remote sensing; Feature extraction; Decoding; Training; Network architecture; Task analysis; Deep learning; Change detection; remote sensing; Siamese network; similarity attention; ATTENTION;
D O I
10.1109/JSTARS.2021.3069242
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Change detection is an important task in the field of remote sensing. Various change detection methods based on convolutional neural networks (CNNs) have recently been proposed for remote sensing using satellite or aerial images. However, existing methods allow only the partial use of content information in images during change detection because they adopt simple feature similarity measurements or pixel-level loss functions to construct their network architectures. Therefore, when these methods are applied to complex urban areas, their performance in terms of change detection tends to be limited. In this article, a novel CNN-based change detection approach, referred to as a local similarity Siamese network (LSS-Net), with a cosine similarity measurement, was proposed for better urban land change detection in remote sensing images. To use content information on two sequential images, a new change attention map-based content loss function was developed in this study. In addition, to enhance the performance of the LSS-Net in terms of change detection, a suitable feature similarity measurement method, incorporated into a local similarity attention module, was determined through systemic experiments. To verify the change detection performance of the LSS-Net, it was compared with other state-of-the-art methods. The experimental results show that the proposed method outperforms the state-of-the-art methods in terms of the F1 score (0.9630, 0.9377, and 0.7751) and kappa (0.9581, 0.9351, and 0.7646) on the three test datasets, thus suggesting its potential for various remote sensing applications.
引用
收藏
页码:4139 / 4149
页数:11
相关论文
共 50 条
  • [41] STransUNet: A Siamese TransUNet-Based Remote Sensing Image Change Detection Network
    Yuan, Jian
    Wang, Liejun
    Cheng, Shuli
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 9241 - 9253
  • [42] A Kernel-Based Similarity Measuring for Change Detection in Remote Sensing Images
    Shi, Xiaodan
    Ma, Guorui
    Chen, Fenge
    Ma, Yanli
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 999 - 1006
  • [43] SASiamNet: Self-Adaptive Siamese Network for Change Detection of Remote Sensing Image
    Long, Xianxuan
    Zhuang, Wei
    Xia, Min
    Hu, Kai
    Lin, Haifeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1021 - 1034
  • [44] A Full-Scale Feature Fusion Siamese Network for Remote Sensing Change Detection
    Zhou, Huaping
    Song, Minglong
    Sun, Kelei
    ELECTRONICS, 2023, 12 (01)
  • [45] Attention-guided siamese networks for change detection in high resolution remote sensing images
    Yin, Hongyang
    Weng, Liguo
    Li, Yan
    Xia, Min
    Hu, Kai
    Lin, Haifeng
    Qian, Ming
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 117
  • [46] STCD: efficient Siamese transformers-based change detection method for remote sensing images
    Wang, Decheng
    Chen, Xiangning
    Guo, Ningbo
    Yi, Hui
    Li, Yinan
    GEO-SPATIAL INFORMATION SCIENCE, 2024, 27 (04): : 1192 - 1211
  • [47] SAS-NET: SIMILARITY ATTENTION SIAMESE NETWORK FOR BUILDING CHANGE DETECTION IN UAV IMAGES
    Zhai, Yikui
    Li, Wenba
    Tan, Zijun
    Zhou, Jianhong
    Li, Qing
    Ying, Zilu
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5459 - 5462
  • [48] Multiscale Attention Network Guided With Change Gradient Image for Land Cover Change Detection Using Remote Sensing Images
    Lv, Zhiyong
    Zhong, Pingdong
    Wang, Wei
    You, Zhenzhen
    Falco, Nicola
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [49] CSTSUNet: A Cross Swin Transformer-Based Siamese U-Shape Network for Change Detection in Remote Sensing Images
    Wu, Yaping
    Li, Lu
    Wang, Nan
    Li, Wei
    Fan, Junfang
    Tao, Ran
    Wen, Xin
    Wang, Yanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [50] MSGATN: A Superpixel-Based Multi-Scale Siamese Graph Attention Network for Change Detection in Remote Sensing Images
    Shuai, Wenjing
    Jiang, Fenlong
    Zheng, Hanhong
    Li, Jianzhao
    APPLIED SCIENCES-BASEL, 2022, 12 (10):