Local Similarity Siamese Network for Urban Land Change Detection on Remote Sensing Images

被引:33
|
作者
Lee, Haeyun [1 ]
Lee, Kyungsu [1 ]
Kim, Jun Hee [2 ]
Na, Younghwan [1 ]
Park, Juhum [3 ]
Choi, Jihwan P. [4 ]
Hwang, Jae Youn [1 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol, Informat & Commun Engn, Daegu 42988, South Korea
[2] Agcy Def Dev, Daejoen 34186, South Korea
[3] Dabeeo Inc, Seoul 04107, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Aerosp Engn, Daejoen 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Remote sensing; Feature extraction; Decoding; Training; Network architecture; Task analysis; Deep learning; Change detection; remote sensing; Siamese network; similarity attention; ATTENTION;
D O I
10.1109/JSTARS.2021.3069242
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Change detection is an important task in the field of remote sensing. Various change detection methods based on convolutional neural networks (CNNs) have recently been proposed for remote sensing using satellite or aerial images. However, existing methods allow only the partial use of content information in images during change detection because they adopt simple feature similarity measurements or pixel-level loss functions to construct their network architectures. Therefore, when these methods are applied to complex urban areas, their performance in terms of change detection tends to be limited. In this article, a novel CNN-based change detection approach, referred to as a local similarity Siamese network (LSS-Net), with a cosine similarity measurement, was proposed for better urban land change detection in remote sensing images. To use content information on two sequential images, a new change attention map-based content loss function was developed in this study. In addition, to enhance the performance of the LSS-Net in terms of change detection, a suitable feature similarity measurement method, incorporated into a local similarity attention module, was determined through systemic experiments. To verify the change detection performance of the LSS-Net, it was compared with other state-of-the-art methods. The experimental results show that the proposed method outperforms the state-of-the-art methods in terms of the F1 score (0.9630, 0.9377, and 0.7751) and kappa (0.9581, 0.9351, and 0.7646) on the three test datasets, thus suggesting its potential for various remote sensing applications.
引用
收藏
页码:4139 / 4149
页数:11
相关论文
共 50 条
  • [31] Bilateral Semantic Fusion Siamese Network for Change Detection From Multitemporal Optical Remote Sensing Imagery
    Du, Hailin
    Zhuang, Yin
    Dong, Shan
    Li, Can
    Chen, He
    Zhao, Boya
    Chen, Liang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [32] Wavelet Siamese Network With Semi-Supervised Domain Adaptation for Remote Sensing Image Change Detection
    Xiong, Fengchao
    Li, Tianhan
    Yang, Yi
    Zhou, Jun
    Lu, Jianfeng
    Qian, Yuntao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [33] Remote Sensing Images Change Detection Using Triple Attention Mechanism to Aggregate Global and Local Features
    Ding, Chenyin
    Cheng, Qianwen
    Lin, Yukun
    Yu, Jia
    Du, Shiqiang
    Du, Bo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [34] Attention-guided siamese networks for change detection in high resolution remote sensing images
    Yin, Hongyang
    Weng, Liguo
    Li, Yan
    Xia, Min
    Hu, Kai
    Lin, Haifeng
    Qian, Ming
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 117
  • [35] F3Net: Feature Filtering Fusing Network for Change Detection of Remote Sensing Images
    Huang, Junqing
    Yuan, Xiaochen
    Lam, Chan-Tong
    Huang, Guoheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 10621 - 10635
  • [36] Building Change Detection for Remote Sensing Images Using a Dual-Task Constrained Deep Siamese Convolutional Network Model
    Liu, Yi
    Pang, Chao
    Zhan, Zongqian
    Zhang, Xiaomeng
    Yang, Xue
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 811 - 815
  • [37] Hierarchical Attention Feature Fusion-Based Network for Land Cover Change Detection With Homogeneous and Heterogeneous Remote Sensing Images
    Lv, ZhiYong
    Liu, Jie
    Sun, Weiwei
    Lei, Tao
    Benediktsson, Jon Atli
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [38] Attention Filtering Network Based on Branch Transformer for Change Detection in Remote Sensing Images
    Yu, Shangguan
    Li, Jinjiang
    Liu, Yepeng
    Fan, Zhang
    Zhang, Caiming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 19
  • [39] MFIHNet: Multiscale Feature Interaction Hybrid Network for Change Detection of Remote Sensing Images
    Cao, Lin
    Liu, Qi
    Tian, Shu
    Kang, Lihong
    Tian, Jing
    Xing, Xiangwei
    Du, Kangning
    Bian, Huanyu
    Song, Peiran
    Guo, Yanan
    Fan, Chunzhuo
    Fu, Chong
    Zhang, Ye
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 16672 - 16691
  • [40] Spatial-Temporal Evolution Guided Change Detection Network for Remote Sensing Images
    Wang, Qingwang
    Hong, Zheng
    Huang, Jiangbo
    Zhao, Xiaobin
    Song, Jian
    Zeng, Kai
    Shi, Jianwu
    Shen, Tao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 14080 - 14092