The effects of waterjet peening on a random-topography metallic implant surface

被引:21
作者
Xie, Jing [1 ]
Rittel, Daniel [1 ]
机构
[1] Technion Israel Inst Technol, Fac Mech Engn, IL-32000 Haifa, Israel
关键词
Waterjet peening; Rough surface; Impact velocity; Area roughness parameters; DENTAL IMPLANTS; PURE WATERJET; ROUGHNESS PARAMETERS; TITANIUM; BONE; WETTABILITY; CELLS; MODEL; AREA;
D O I
10.1016/j.euromechsol.2018.03.022
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Surface roughening is often applied to various devices, such as orthopedic and dental implants, in order to promote bone-implant attachment (osseointegration). In this study, we investigate the influence of pure waterjet peening on a generated random metallic surface. The deformation of the substrate, the height distributions, material ratio curves of deformed surfaces, and 12 area roughness parameters were analyzed for different impact velocities, ranging from 100 m/s to 700 m/s, and different initial arithmetic mean heights (Sa), ranging from 0.62 mu m to 1.88 mu m. As the impact velocity increases, the height distribution becomes wider. The dispersion parameters Sa and Sq, extreme parameter Sz, and asymmetry parameter Ssk all reach their higher values at a higher impact velocity. The root mean square height Sq relates to surface energy where both cell adhesion and protein adsorption can be enhanced by a higher surface energy. The negative skewness Ssk surface obtained from the waterjet peening process corresponds to improved load bearing surface since most peaks can be worn away quickly, thereby providing a good contact condition for the implant and surrounding tissues. The material ratio curves obtained at different impact velocities demonstrate that higher impact velocity results in higher values of valley depth (Svk), which indicates a larger available surface area for cell adhesion, proliferation/differentiation. It is recommended that when describing the roughness in the context of cell adhesion research, the roughness parameters Sq, Ssk, Svk be reported as a minimum set.
引用
收藏
页码:235 / 244
页数:10
相关论文
共 50 条
[41]   Surface Topography Steer Soft Tissue Response and Antibacterial Function at the Transmucosal Region of Titanium Implant [J].
Safaei, Mohsen ;
Mohammadi, Hossein ;
Beddu, Salmia ;
Mozaffari, Hamid Reza ;
Rezaei, Razieh ;
Sharifi, Roohollah ;
Moradpoor, Hedaiat ;
Fallahnia, Nima ;
Ebadi, Mona ;
Jamil, Mohd Suzeren Md ;
Zain, Ahmad Rifqi Md ;
Yusop, Muhammad Rahimi .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2024, 19 :4835-4856
[42]   Impact of implant surface topography: a clinical study with a mean functional loading time of 85 months [J].
Arnhart, Christoph ;
Dvorak, Gabriella ;
Trefil, Caroline ;
Huber, Christian ;
Watzek, Georg ;
Zechner, Werner .
CLINICAL ORAL IMPLANTS RESEARCH, 2013, 24 (09) :1049-1054
[43]   Effects of Surface Peening on Residual Stress and Microstructure of Nickel-base Alloy 182 and 52 M Welds [J].
Bai, Baosheng ;
Kim, Sungyu ;
Moon, Joonho ;
Yi, Wongeun ;
Yun, Eunsub ;
Bahn, Chi Bum .
METALS AND MATERIALS INTERNATIONAL, 2025, 31 (05) :1352-1368
[44]   Influence of Semi-Random and Regular Shot Peening on Selected Surface Layer Properties of Aluminum Alloy [J].
Matuszak, Jakub ;
Zaleski, Kazimierz ;
Skoczylas, Agnieszka ;
Ciecielag, Krzysztof ;
Kecik, Krzysztof .
MATERIALS, 2021, 14 (24)
[45]   Effects of surface splicing characteristics of the hardened steel mold on the machined surface topography [J].
Wu, Shi ;
Li, Zhonghua ;
Liu, Xianli ;
Liu, Zhijing .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2020, 234 (1-2) :270-284
[46]   The effect of five mechanical instrumentation protocols on implant surface topography and roughness: A scanning electron microscope and confocal laser scanning microscope analysis [J].
Cha, Jae-Kook ;
Paeng, Kyeongwon ;
Jung, Ui-Won ;
Choi, Seong-Ho ;
Sanz, Mariano ;
Sanz-Martin, Ignacio .
CLINICAL ORAL IMPLANTS RESEARCH, 2019, 30 (06) :578-587
[47]   The Effects of a Biomimetic Hybrid Meso- and Nano-Scale Surface Topography on Blood and Protein Recruitment in a Computational Fluid Dynamics Implant Model [J].
Kitajima, Hiroaki ;
Hirota, Makoto ;
Osawa, Kohei ;
Iwai, Toshinori ;
Mitsudo, Kenji ;
Saruta, Juri ;
Ogawa, Takahiro .
BIOMIMETICS, 2023, 8 (04)
[48]   Improving the Bioactivity and Antibiofilm Properties of Metallic Implant Materials via Controlled Surface Microdeformation [J].
Bicer, Furkan ;
Toker, Sidika Mine ;
Soykan, Merve Nur ;
Yilmaz, Burcu Turk ;
Gursu, Bukay Yenice ;
Uysal, Onur .
ACS OMEGA, 2024, 9 (42) :43138-43155
[49]   Active nanoceramic compound dipped in biopolymers to create composite coating for metallic implant surface [J].
Al-Khateeb, Amjed ;
Al-Hassani, Emad S. ;
Jabur, Akram R. .
HELIYON, 2023, 9 (09)
[50]   Metallic Implant Surface Activation through Electrospinning Coating of Nanocomposite Fiber for Bone Regeneration [J].
Al-Khateeb, Amjed ;
Al-Hassani, Emad S. ;
Jabur, Akram R. .
INTERNATIONAL JOURNAL OF BIOMATERIALS, 2023, 2023