A note on Diophantine approximation by unlike powers of primes

被引:12
作者
Mu, Quanwu [1 ]
Qu, Yunyun [2 ]
机构
[1] Xian Polytech Univ, Sch Sci, Xian 710048, Shaanxi, Peoples R China
[2] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Diophantine inequality; prime; Davenport-Heilbronn method; TERNARY QUADRATIC-FORMS; BINARY LINEAR-FORMS; 3; SQUARES; NUMBERS; ARGUMENTS; VALUES; SUMS; INEQUALITIES; VARIABLES;
D O I
10.1142/S1793042118501002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that if lambda(1), lambda(2), . . . , lambda(5) are nonzero real numbers, not all of the same sign and lambda(1)/lambda(2) is irrational, then for given real numbers eta and sigma, 0 < sigma < 5/252, the inequality vertical bar lambda(1)p(1) + lambda(2)p(2)(2) + lambda(3)p(3)(3) + lambda(4)p(4)(4) + lambda(5)p(5)(5) + eta vertical bar < (max(1 <= j <= 5) p(j)(j))(-sigma) has infinitely many solutions in prime variables p(1), p(2), p(3), p(4), p(5). This result constitutes an improvement upon that of Liu for the range 0 < sigma < 5/288.
引用
收藏
页码:1651 / 1668
页数:18
相关论文
共 32 条
[1]  
BAKER A, 1967, J REINE ANGEW MATH, V228, P166
[2]  
BAKER RC, 1982, J LOND MATH SOC, V25, P201
[3]   DIOPHANTINE INEQUALITIES WITH MIXED POWERS [J].
BAKER, RC ;
HARMAN, G .
JOURNAL OF NUMBER THEORY, 1984, 18 (01) :69-85
[4]  
Brudern J, 1996, SIEVE METHODS EXPONE, P87
[5]   A remark on the values of binary linear forms at prime arguments [J].
Cai, Yingchun .
ARCHIV DER MATHEMATIK, 2011, 97 (05) :431-441
[6]   The values of ternary quadratic forms at prime arguments [J].
Cook, RJ ;
Fox, A .
MATHEMATIKA, 2001, 48 (95-96) :137-149
[7]  
Davenport H., 1946, J. London Math. Soc, V21, P185, DOI [10.1112/jlms/s1-21.3.185, DOI 10.1112/JLMS/S1-21.3.185]
[8]  
Davenport H, 1980, Multiplicative number theory, V2nd
[9]   One Diophantine inequality with unlike powers of prime variables [J].
Ge, Wenxu ;
Li, Weiping .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, :1-8
[10]   The values of ternary quadratic forms at prime arguments [J].
Harman, G .
MATHEMATIKA, 2004, 51 (101-02) :83-96