Effects of alkyl amide solvents on the dispersion of single-wall carbon nanotubes

被引:178
作者
Landi, BJ
Ruf, HJ
Worman, JJ
Raffaelle, RP [1 ]
机构
[1] Rochester Inst Technol, NPRL, Rochester, NY 14623 USA
[2] Rochester Inst Technol, Dept Chem, Rochester, NY 14623 USA
关键词
D O I
10.1021/jp047521j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Stable dispersions of both as-produced (raw soot) and purified laser-generated single-wall carbon nanotubes (SWNTs) have been demonstrated with several alkyl amide solvents. Optical absorption analysis over a range of concentrations has been utilized to estimate the dispersion limits for as-produced SWNTs in N,Ndimethylformamide (DMF), N,N-dimethylacetamide (DMA), NN-diethylacetamide (DEA), and N,N-dimethy1propanamide (DMP). In addition, extinction coefficients have been calculated using Beer's law for each solvent at energies of 1.27 and 1.77 eV, corresponding to the electronic transitions of semiconducting and metallic SWNTs, respectively. The results imply that high polarizability and optimal geometries (appropriate bond lengths and bond angles) may account for the favorable interaction between SWNTs and the alkyl amide solvents. The successful dispersion of purified SWNTs in DMA has enabled extinction coefficients of 43.4 and 39.0 mL(.)mg(-1.)cm(-1) to be calculated at the selected energies, respectively. The magnitude of the dispersion limit and extinction coefficient values has been shown to be strongly dependent on the SWNT sample purity. These findings offer the potential for solution-phase analysis of SWNTs directed at purity assessment and electrophoretic separations in a simple organic solvent.
引用
收藏
页码:17089 / 17095
页数:7
相关论文
共 36 条
  • [1] Arora K, 2002, ASIAN J CHEM, V14, P1719
  • [2] Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes
    Ausman, KD
    Piner, R
    Lourie, O
    Ruoff, RS
    Korobov, M
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (38): : 8911 - 8915
  • [3] Dissolution of small diameter single-wall carbon nanotubes in organic solvents?
    Bahr, JL
    Mickelson, ET
    Bronikowski, MJ
    Smalley, RE
    Tour, JM
    [J]. CHEMICAL COMMUNICATIONS, 2001, (02) : 193 - 194
  • [4] A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes
    Chattopadhyay, D
    Galeska, L
    Papadimitrakopoulos, F
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (11) : 3370 - 3375
  • [5] Dissolution of full-length single-walled carbon nanotubes
    Chen, J
    Rao, AM
    Lyuksyutov, S
    Itkis, ME
    Hamon, MA
    Hu, H
    Cohn, RW
    Eklund, PC
    Colbert, DT
    Smalley, RE
    Haddon, RC
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (13): : 2525 - 2528
  • [6] Solution properties of single-walled carbon nanotubes
    Chen, J
    Hamon, MA
    Hu, H
    Chen, YS
    Rao, AM
    Eklund, PC
    Haddon, RC
    [J]. SCIENCE, 1998, 282 (5386) : 95 - 98
  • [7] Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization
    Chen, RJ
    Zhang, YG
    Wang, DW
    Dai, HJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) : 3838 - 3839
  • [8] Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process)
    Chiang, IW
    Brinson, BE
    Huang, AY
    Willis, PA
    Bronikowski, MJ
    Margrave, JL
    Smalley, RE
    Hauge, RH
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (35) : 8297 - 8301
  • [9] Carbon nanotubes: opportunities and challenges
    Dai, HJ
    [J]. SURFACE SCIENCE, 2002, 500 (1-3) : 218 - 241
  • [10] Dillon AC, 1999, ADV MATER, V11, P1354, DOI 10.1002/(SICI)1521-4095(199911)11:16<1354::AID-ADMA1354>3.0.CO