Competition between domain growth and interfacial melting

被引:10
作者
Besold, G [1 ]
Mouritsen, OG [1 ]
机构
[1] Tech Univ Denmark, Dept Chem, Membrane & Stat Phys Grp, DTU 207, DK-2800 Lyngby, Denmark
关键词
Monte Carlo simulation; lattice-gas models; solid-liquid transition; grain-boundaries; complete wetting; interfacial melting; domain growth kinetics; continuous ordering; nucleation-and-growth;
D O I
10.1016/S0927-0256(00)00101-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study domain growth and interfacial melting in a two-dimensional lattice-gas model by means of Monte Carlo simulation, using the grand-canonical ensemble. The model exhibits two classes of "solid" domains with superstructure unit cells of different orientation with respect to the underlying square lattice. Interfacial melting (grain-boundary melting) is only observed for grain-boundaries between domains of different orientation. For a constrained configuration of two domains of different orientation ("bicrystal"), separated by a single interface in the [1 1] direction, we find a logarithmic divergence of the width of the disordered wetting layer in accordance with predictions from mean-field theory. Domain growth in an unconstrained and initially disordered system, following a (down-)quench to temperatures well below the bulk melting temperature T-m, is found to be described by the the Lifshitz-Allen-Cahn growth law with exponent n = 1/2. With increasing quench temperature, a transition from non-activated continuous ordering to an activated nucleation-and-growth mechanism is observed. For quenches to temperatures only slightly below T-m, domain growth turns out to be effectively suppressed. When not yet equilibrated multi-domain configurations are up-quenched to and annealed at temperatures slightly below T-m, the further evolution of the system depends on the morphology of the domain pattern: an equilibrium mono-domain configuration is eventually obtained only if domains of the same orientation were initially present. For initial configurations with domains of both types of orientation, however, and depending on the actual domain sizes, interfacial melting may again drive the system towards a completely disordered, long-living metastable state. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:225 / 244
页数:20
相关论文
共 79 条
  • [1] A NOTE ON THE KINETICS OF WETTING TRANSITIONS IN TWO-DIMENSIONAL LATTICE-GAS SYSTEMS
    ALANISSILA, T
    KANKAALA, K
    KASKI, K
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (13): : 2629 - 2634
  • [2] UNIVERSAL DOMAIN GROWTH IN A LATTICE-GAS MODEL OF O/PD(110)
    ALANISSILA, T
    GUNTON, JD
    [J]. PHYSICAL REVIEW B, 1988, 38 (16): : 11418 - 11431
  • [3] Allen M. P., 1989, COMPUTER SIMULATION
  • [4] MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING
    ALLEN, SM
    CAHN, JW
    [J]. ACTA METALLURGICA, 1979, 27 (06): : 1085 - 1095
  • [5] [Anonymous], 1986, MONTE CARLO METHODS
  • [6] [Anonymous], 1995, The Monte Carlo method in condensed matter physics
  • [7] Efficient Monte Carlo sampling by direct flattening of free energy barriers
    Besold, G
    Risbo, J
    Mouritsen, OG
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 1999, 15 (03) : 311 - 340
  • [8] GRAIN-BOUNDARY MELTING - A MONTE-CARLO STUDY
    BESOLD, G
    MOURITSEN, OG
    [J]. PHYSICAL REVIEW B, 1994, 50 (10) : 6573 - 6576
  • [9] THEORY OF 1ST-ORDER PHASE-TRANSITIONS
    BINDER, K
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1987, 50 (07) : 783 - 859
  • [10] BINDER K, 1987, APPL MONTE CARLO MET, pCH1