Lung Nodule Detection using Convolutional Neural Networks with Transfer Learning on CT Images

被引:4
作者
Gao, Jun [1 ]
Jiang, Qian [1 ]
Zhou, Bo [2 ]
Chen, Daozheng [1 ]
机构
[1] Shanghai Maritime Univ, Coll Informat Engn, Shanghai 201306, Peoples R China
[2] Shanghai Univ Med & Hlth Sci, Shanghai 201308, Peoples R China
基金
美国国家卫生研究院;
关键词
Lung nodule detection; CNNs; CT; transfer learning; medical image analysis; deep learning; FALSE-POSITIVE REDUCTION; COMPUTER-AIDED DETECTION; PULMONARY NODULES; DATABASE CONSORTIUM; AUTOMATIC DETECTION; SEGMENTATION; TOMOGRAPHY; DIAGNOSIS;
D O I
10.2174/1386207323666200714002459
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Aim and Objective: Lung nodule detection is critical in improving the five-year survival rate and reducing mortality for patients with lung cancer. Numerous methods based on Convolutional Neural Networks (CNNs) have been proposed for lung nodule detection in Computed Tomography (CT) images. With the collaborative development of computer hardware technology, the detection accuracy and efficiency can still be improved. Materials and Methods: In this study, an automatic lung nodule detection method using CNNs with transfer learning is presented. We first compared three of the state-of-the-art convolutional neural network (CNN) models, namely, VGG16, VGG19 and ResNet50, to determine the most suitable model for lung nodule detection. We then utilized two different training strategies, namely, freezing layers and fine-tuning, to illustrate the effectiveness of transfer learning. Furthermore, the hyper-parameters of the CNN model such as optimizer, batch size and epoch were optimized. Results: Evaluated on the Lung Nodule Analysis 2016 (LUNA16) challenge, promising results with an accuracy of 96.86%, a precision of 91.10%, a sensitivity of 90.78%, a specificity of 98.13%, and an AUC of 99.37% were achieved. Conclusion: Compared with other works, state-of-the-art specificity is obtained, which demonstrates that the proposed method is effective and applicable to lung nodule detection.
引用
收藏
页码:814 / 824
页数:11
相关论文
共 40 条
  • [1] Lung Nodule Detection via Deep Reinforcement Learning
    Ali, Issa
    Hart, Gregory R.
    Gunabushanam, Gowthaman
    Liang, Ying
    Muhammad, Wazir
    Nartowt, Bradley
    Kane, Michael
    Ma, Xiaomei
    Deng, Jun
    [J]. FRONTIERS IN ONCOLOGY, 2018, 8
  • [2] Representation learning for mammography mass lesion classification with convolutional neural networks
    Arevalo, John
    Gonzalez, Fabio A.
    Ramos-Pollan, Raul
    Oliveira, Jose L.
    Guevara Lopez, Miguel Angel
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 127 : 248 - 257
  • [3] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [4] The use of the area under the roc curve in the evaluation of machine learning algorithms
    Bradley, AP
    [J]. PATTERN RECOGNITION, 1997, 30 (07) : 1145 - 1159
  • [5] Multi-Branch Ensemble Learning Architecture Based on 3D CNN for False Positive Reduction in Lung Nodule Detection
    Cao, Haichao
    Liu, Hong
    Song, Enmin
    Ma, Guangzhi
    Xu, Xiangyang
    Jin, Renchao
    Liu, Tengying
    Hung, Chih-Cheng
    [J]. IEEE ACCESS, 2019, 7 : 67380 - 67391
  • [6] Lung nodules diagnosis based on evolutionary convolutional neural network
    da Silva, Giovanni L. F.
    da Silva Neto, Otilio P.
    Silva, Aristofanes C.
    de Paiva, Anselmo C.
    Gattass, Marcelo
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (18) : 19039 - 19055
  • [7] Computer-aided detection of lung nodules using outer surface features
    Demir, Onder
    Camurcu, Ali Yilmaz
    [J]. BIO-MEDICAL MATERIALS AND ENGINEERING, 2015, 26 : S1213 - S1222
  • [8] Computer-aided detection and analysis of pulmonary nodule from CT images: A survey
    Dhara, Ashis Kumar
    Mukhopadhyay, Sudipta
    Khandelwal, Niranjan
    [J]. IETE TECHNICAL REVIEW, 2012, 29 (04) : 265 - 275
  • [9] Computer-aided diagnosis in medical imaging: Historical review, current status and future potential
    Doi, Kunio
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (4-5) : 198 - 211
  • [10] Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection
    Dou, Qi
    Chen, Hao
    Yu, Lequan
    Qin, Jing
    Heng, Pheng-Ann
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (07) : 1558 - 1567