Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers

被引:22
作者
Ehman, N. V. [1 ]
Lourenco, A. F. [2 ]
McDonagh, B. H. [3 ]
Vallejos, M. E. [1 ]
Felissia, F. E. [1 ]
Ferreira, P. J. T. [2 ]
Chinga-Carrasco, G. [3 ]
Area, M. C. [1 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, FCEQYN, UNAM, IMAM, Felix Azara 1552, Posadas, Argentina
[2] Univ Coimbra, Dept Chem Engn, CIEPQPF, P-3030790 Coimbra, Portugal
[3] RISE PFI, Hogskoleringen 6b, Trondheim, Norway
关键词
Lignocellulosic nanofibers; Pine and eucalyptus sawdust; Sugarcane bagasse; TEMPO-MEDIATED OXIDATION; CELLULOSE NANOFIBERS; NANOCELLULOSE; FIBRILLATION; LIGNIN; STRAW; HEMICELLULOSES; VALORIZATION; AEROGELS; SAWDUST;
D O I
10.1016/j.ijbiomac.2019.10.165
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This work aimed to study the influence of the initial chemical composition (glucans, lignin, xylan, and mannans), intrinsic viscosity, and carboxylate groups of pulps on the production process and final properties of lignocellulosic nanofibers (LCNF). Pulps of pine sawdust, eucalyptus sawdust, and sugarcane bagasse subjected to conventional pulping and highly oxidized processes were the starting materials. The LCNF were obtained by TEMPO mediated oxidation and mechanical fibrillation with a colloidal grinder. The nanofibrillation degree, chemical charge content, rheology, laser profilometry, cristallinity and atomic force microscopy were used to characterize the LCNF. The carboxylate groups, hemicelluloses and lignin of the initial pulps were important factors that affected the production process of LCNF. The results revealed that intrinsic viscosity and carboxylate groups of the initial pulps affected LCNF production process, whereas lignin and hemicelluloses influenced the viscosity of LCNF aqueous suspensions, the roughness of LCNF films, and the carboxylate groups content of LCNF. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:453 / 461
页数:9
相关论文
共 55 条
[1]  
Aguilar M. Delgado, 2015, NANOTECNOLOGIA SECTO
[2]  
Albornoz G., 2018, 51 PULP PAP INT C 10, P23
[3]  
Area M.C., 2012, BIORREFINERIAS PARTI
[4]   Nanocellulose in bio-based food packaging applications [J].
Azeredo, Henriette M. C. ;
Rosa, Morsyleide F. ;
Mattoso, Luiz Henrique C. .
INDUSTRIAL CROPS AND PRODUCTS, 2017, 97 :664-671
[5]  
Balea A., 2019, IN SITU PRODUCTION A, P1
[6]   Assessing the influence of refining, bleaching and TEMPO-mediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives [J].
Balea, Ana ;
Merayo, Noemi ;
De La Fuente, Elena ;
Negro, Carlos ;
Blanco, Angeles .
INDUSTRIAL CROPS AND PRODUCTS, 2017, 97 :374-387
[7]  
Balea A, 2016, BIORESOURCES, V11, P3416
[8]   Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content [J].
Besbes, Iskander ;
Alila, Sabrine ;
Boufi, Sami .
CARBOHYDRATE POLYMERS, 2011, 84 (03) :975-983
[9]  
Blanco A, 2018, MICRO NANO TECHNOL, P74, DOI 10.1016/B978-0-12-813351-4.00005-5
[10]   Pulping and Pretreatment Affect the Characteristics of Bagasse Inks for Three-dimensional Printing [J].
Chinga-Carrasco, Gary ;
Ehman, Nanci V. ;
Pettersson, Jennifer ;
Vallejos, Maria E. ;
Brodin, Malin W. ;
Felissia, Fernando E. ;
Hakansson, Joakim ;
Area, Maria C. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (03) :4068-4075