On logarithmic Sobolev inequalities for higher order fractional derivatives

被引:28
作者
Cotsiolis, A [1 ]
Tavoularis, NK [1 ]
机构
[1] Univ Patras, Dept Math, GR-26110 Patras, Greece
关键词
D O I
10.1016/j.crma.2004.11.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On R, we prove the existence of sharp logarithmic Sobolev inequalities with higher fractional derivatives. Let s be a positive real number. Any function f epsilon H-s(R-n) satisfies [GRAPHICS] with alpha > 0 be any number and where the operators (-Delta)(s/2) in Fourier spaces are defined by (-Delta)sl2f(k) := (2pi\k\)(s)(f) over cap (k). To cite this article: A. Cotsiolis, NX Tavoularis, C R. Acad. Sci. Paris, Ser. 1340 (2005). (C) 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:205 / 208
页数:4
相关论文
共 13 条
[1]  
Ane C., 2000, INEGALITES SOBOLEV L, V10
[2]  
[Anonymous], 1959, INFORM CONTROL
[3]  
Aubin T., 1998, Some Nonlinear Problems in Riemannian Geometry
[4]   On sharp Sobolev embedding and the logarithmic Sobolev inequality [J].
Beckner, W ;
Pearson, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 :80-84
[5]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[6]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[7]   Best constants for Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) :225-236
[8]   Sharp Sobolev type inequalities for higher fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NC .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (10) :801-804
[9]   Nonlinear diffusions, hypercontractivity and the optimal LP-Euclidean logarithmic Sobolev inequality [J].
Del Pino, M ;
Dolbeault, J ;
Gentil, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) :375-388
[10]  
GILLES R, 1999, COURS SPECIALISES, V5