Operando X-ray Investigation of Electrode/Electrolyte Interfaces in Model Solid Oxide Fuel Cells

被引:13
|
作者
Volkov, Sergey [1 ,2 ]
Vonk, Vedran [1 ]
Khorshidi, Navid [3 ]
Franz, Dirk [1 ,2 ]
Kubicek, Markus [4 ]
Kilic, Volkan [5 ]
Felici, Roberto [6 ]
Huber, Tobias M. [4 ]
Navickas, Edvinas [4 ]
Rupp, Ghislain M. [4 ]
Fleig, Juergen [4 ]
Stierle, Andreas [1 ,2 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany
[2] Univ Hamburg, Fachbereich Phys, Jungiusstr 9, D-20355 Hamburg, Germany
[3] Max Planck Inst Intelligente Syst, Heisenbergstr 3, D-70569 Stuttgart, Germany
[4] Vienna Univ Technol, Inst Chem Technol & Analyt, Getreidemarkt 9, A-1060 Vienna, Austria
[5] Univ Siegen, D-57072 Siegen, Germany
[6] ESRF, F-38000 Grenoble, France
基金
奥地利科学基金会;
关键词
YTTRIA-STABILIZED ZIRCONIA; THIN-FILMS; IN-SITU; ELECTROCHEMICAL PROPERTIES; 111; SURFACE; SPECTROSCOPY; SEGREGATION; DIFFRACTION; ELECTRODES; SCATTERING;
D O I
10.1021/acs.chemmater.6b00351
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We employed operando anomalous surface X-ray diffraction to investigate the buried interface between the cathode and the electrolyte of a model solid oxide fuel cell with atomic resolution. The cell was studied under different oxygen pressures at elevated temperatures and polarizations by external potential control. Making use of anomalous X-ray diffraction effects at the Y and Zr K-edges allowed us to resolve the interfacial structure and chemical composition of a (100)-oriented, 9.5 mol % yttria-stabilized zirconia (YSZ) single crystal electrolyte below a La0.6Sr0.4CoO3-delta (LSC) electrode. We observe yttrium segregation toward the YSZ/LSC electrolyte/electrode interface under reducing conditions. Under oxidizing conditions, the interface becomes Y depleted. The yttrium segregation is corroborated by an enhanced outward relaxation of the YSZ interfacial metal ion as layer. At the same time, an increase in point defect concentration in the electrolyte at the interface was observed, as evidenced by reduced YSZ crystallographic site occupancies for the cations as well as the oxygen ions. Such changes in composition are expected to strongly influence the oxygen ion transport through this interface which plays an important role for the performance of solid oxide fuel cells. The structure of the interface is compared to the bare YSZ(100) surface structure near the microelectrode under identical conditions and to the structure of the YSZ(100) surface prepared under ultrahigh vacuum conditions.
引用
收藏
页码:3727 / 3733
页数:7
相关论文
共 50 条
  • [1] Electrode-Electrolyte Compatibility in Solid-Oxide Fuel Cells: Investigation of the LSM-LNC Interface with X-ray Microspectroscopy
    Giannici, Francesco
    Canu, Giovanna
    Gambino, Marianna
    Longo, Alessandro
    Salome, Murielle
    Viviani, Massimo
    Martorana, Antonino
    CHEMISTRY OF MATERIALS, 2015, 27 (08) : 2763 - 2766
  • [2] Correlative tomography at the cathode/electrolyte interfaces of solid oxide fuel cells
    Wankmueller, Florian
    Szasz, Julian
    Joos, Jochen
    Wilde, Virginia
    Stoermer, Heike
    Gerthsen, Dagmar
    Ivers-Tiffee, Ellen
    JOURNAL OF POWER SOURCES, 2017, 360 : 399 - 408
  • [3] In situ X-ray studies of film cathodes for solid oxide fuel cells
    Fuoss, Paul
    Chang, Kee-Chul
    You, Hoydoo
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2013, 190 : 75 - 83
  • [4] Enhanced charge transfer with Ag grids at electrolyte/electrode interfaces in solid oxide fuel cells
    Choi, Mingi
    Hwang, Sangyeon
    Byun, Doyoung
    Lee, Wonyoung
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (12) : 4420 - 4424
  • [5] Thermally and Electrochemically Induced Electrode/Electrolyte Interfaces in Solid Oxide Fuel Cells: An AFM and EIS Study
    Jiang, San Ping
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) : F1119 - F1128
  • [6] Operando X-ray absorption and infrared fuel cell spectroscopy
    Lewis, Emily A.
    Kendrick, Ian
    Jia, Qingying
    Grice, Corey
    Segre, Carlo U.
    Smotkin, Eugene S.
    ELECTROCHIMICA ACTA, 2011, 56 (24) : 8827 - 8832
  • [7] Enhancement of oxygen reduction reaction kinetics using infiltrated yttria-stabilized zirconia interlayers at the electrolyte/electrode interfaces of solid oxide fuel cells
    Koo, Ja Yang
    Mun, Taeeun
    Lee, Jongseo
    Choi, Mingi
    Kim, Seo Ju
    Lee, Wonyoung
    JOURNAL OF POWER SOURCES, 2020, 472
  • [8] In Situ X-Ray Diffraction and Stress Analysis of Solid Oxide Fuel Cells
    Wolf, S.
    Canas, N. A.
    Friedrich, K. A.
    FUEL CELLS, 2013, 13 (03) : 404 - 409
  • [9] Effects of Grain Boundaries at the Electrolyte/Cathode Interfaces on Oxygen Reduction Reaction Kinetics of Solid Oxide Fuel Cells
    Choi, Mingi
    Koo, Ja Yang
    Ahn, Minwoo
    Lee, Wonyoung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2017, 38 (04) : 423 - 428