Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications-A Review

被引:89
作者
Ali, Naser [1 ]
Bahman, Ammar M. [2 ]
Aljuwayhel, Nawaf F. [2 ]
Ebrahim, Shikha A. [2 ]
Mukherjee, Sayantan [3 ]
Alsayegh, Ali [4 ]
机构
[1] Kuwait Inst Sci Res, Nanotechnol & Adv Mat Program, Energy & Bldg Res Ctr, Safat 13109, Kuwait
[2] Kuwait Univ, Coll Engn & Petr, Mech Engn Dept, POB 5969, Safat 13060, Kuwait
[3] Kalinga Inst Ind Technol, Sch Mech Engn, Thermal Res Lab TRL, Bhubaneswar 751024, Odisha, India
[4] Cranfield Univ, Sch Aerosp Transport & Mfg SATM, Cranfield MK43 0AL, Beds, England
关键词
carbon nanotubes; graphene; nanodiamond; parabolic trough solar collector; nuclear reactor; air conditioning and refrigeration; ENHANCED THERMAL-CONDUCTIVITY; REDUCED GRAPHENE OXIDE; WATER-BASED NANOFLUIDS; OIL-BASED NANOFLUIDS; SLOPE SOLAR-STILL; THERMOPHYSICAL PROPERTIES; PHYSICAL-PROPERTIES; PRESSURE-DROP; TRANSFER PERFORMANCE; FUNCTIONALIZED GRAPHENE;
D O I
10.3390/nano11061628
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanofluids have opened the doors towards the enhancement of many of today's existing thermal applications performance. This is because these advanced working fluids exhibit exceptional thermophysical properties, and thus making them excellent candidates for replacing conventional working fluids. On the other hand, nanomaterials of carbon-base were proven throughout the literature to have the highest thermal conductivity among all other types of nanoscaled materials. Therefore, when these materials are homogeneously dispersed in a base fluid, the resulting suspension will theoretically attain orders of magnitude higher effective thermal conductivity than its counterpart. Despite this fact, there are still some challenges that are associated with these types of fluids. The main obstacle is the dispersion stability of the nanomaterials, which can lead the attractive properties of the nanofluid to degrade with time, up to the point where they lose their effectiveness. For such reason, this work has been devoted towards providing a systematic review on nanofluids of carbon-base, precisely; carbon nanotubes, graphene, and nanodiamonds, and their employment in thermal systems commonly used in the energy sectors. Firstly, this work reviews the synthesis approaches of the carbon-based feedstock. Then, it explains the different nanofluids fabrication methods. The dispersion stability is also discussed in terms of measuring techniques, enhancement methods, and its effect on the suspension thermophysical properties. The study summarizes the development in the correlations used to predict the thermophysical properties of the dispersion. Furthermore, it assesses the influence of these advanced working fluids on parabolic trough solar collectors, nuclear reactor systems, and air conditioning and refrigeration systems. Lastly, the current gap in scientific knowledge is provided to set up future research directions.
引用
收藏
页数:78
相关论文
共 516 条
[71]   Wear and friction performance evaluation of nickel based nanocomposite coatings under refrigerant lubrication [J].
Bhutta, Muhammad Usman ;
Khan, Zulfiqar Ahmad .
TRIBOLOGY INTERNATIONAL, 2020, 148
[72]  
Bicerano J, 1999, J MACROMOL SCI R M C, VC39, P561
[73]   Viscosity of water based SWCNH and TiO2 nanofluids [J].
Bobbo, Sergio ;
Fedele, Laura ;
Benetti, Anna ;
Colla, Laura ;
Fabrizio, Monica ;
Pagura, Cesare ;
Barison, Simona .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2012, 36 :65-71
[74]   CARBON FROM CARBON-MONOXIDE DISPROPORTIONATION ON NICKEL AND IRON CATALYSTS - MORPHOLOGICAL STUDIES AND POSSIBLE GROWTH MECHANISMS [J].
BOEHM, HP .
CARBON, 1973, 11 (06) :583-&
[75]   High yield fabrication of fluorescent nanodiamonds [J].
Boudou, Jean-Paul ;
Curmi, Patrick A. ;
Jelezko, Fedor ;
Wrachtrup, Joerg ;
Aubert, Pascal ;
Sennour, Mohamed ;
Balasubramanian, Gopalakrischnan ;
Reuter, Rolf ;
Thorel, Alain ;
Gaffet, Eric .
NANOTECHNOLOGY, 2009, 20 (23)
[76]   PREPARATION OF DIAMOND [J].
BOVENKERK, HP ;
BUNDY, FP ;
HALL, HT ;
STRONG, HM ;
WENTORF, RH .
NATURE, 1959, 184 (4693) :1094-1098
[77]   Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts [J].
Boyaghchi, Fateme Ahmadi ;
Chavoshi, Mansoure .
APPLIED THERMAL ENGINEERING, 2017, 112 :660-675
[78]   Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid [J].
Boyaghchi, Fateme Ahmadi ;
Chavoshi, Mansoure ;
Sabeti, Vajiheh .
ENERGY, 2015, 91 :685-699
[79]   Nanodiamond Nanofluids for Enhanced Thermal Conductivity [J].
Branson, Blake T. ;
Beauchamp, Paul S. ;
Beam, Jeremiah C. ;
Lukehart, Charles M. ;
Davidson, Jim L. .
ACS NANO, 2013, 7 (04) :3183-3189
[80]  
BRENNER H, 1974, J COLLOID INTERF SCI, V47, P199, DOI 10.1016/0021-9797(74)90093-9