Integrated Local Petrov-Galerkin Sinc Method for Structural Mechanics Problems

被引:3
|
作者
Slemp, Wesley C. H. [1 ]
Kapania, Rakesh K. [1 ]
Mulani, Sameer B.
机构
[1] Virginia Polytech Inst & State Univ, Sensors & Struct Hlth Monitoring Grp, Blacksburg, VA 24060 USA
关键词
DOUBLE-EXPONENTIAL TRANSFORMATION; COLLOCATION METHOD; DIFFERENTIAL QUADRATURE; NUMERICAL-SOLUTION; BOUNDARY-CONDITIONS; MESHLESS METHODS; FREE-VIBRATION; EQUATIONS; APPROXIMATION; INTERPOLATION;
D O I
10.2514/1.45892
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A novel method for solving static boundary-value problems named the integrated local Petrov-Galerkin sine method is introduced. The method uses the process of numerical indefinite integration based on the double-exponential transformation to develop basis functions for a local Petrov-Galerkin type numerical method. Because the developed basis functions do not satisfy the Kronecker delta property, essential boundary conditions are imposed using the traditional penalty method and the Lagrange multiplier method. Three basis functions are introduced, and the accuracy and efficiency of the method is examined for two problems: a one-dimensional tapered bar with vanishing tip area and a two-dimensional plane-stress elasticity problem. The numerical results indicate that the integrated local Petrov-Galerkin sine method can provide greater accuracy than the sine method based on Interpolation of highest derivative. For the two example problems studied, the method's high rate of convergence can provide greater accuracy of stresses for the same computational cost as a displacement-based C-0-continuous and a mixed finite element. However, the still in development integrated local Petrov-Galerkin sine method suffers from requiring a more fully populated stiffness matrix and relatively high computational cost of the matrix factorization.
引用
收藏
页码:1141 / 1155
页数:15
相关论文
共 50 条
  • [1] Beam Delamination by Integrated Local Petrov-Galerkin Sinc Method
    Slemp, Wesley C. H.
    Kapania, Rakesh K.
    AIAA JOURNAL, 2014, 52 (02) : 419 - 435
  • [2] Elastic-Plastic Analysis by Integrated Local Petrov-Galerkin Sinc Method
    Slemp, Wesley C. H.
    Mulani, Sameer B.
    Kapania, Rakesh K.
    AIAA JOURNAL, 2010, 48 (09) : 2084 - 2098
  • [3] AN INTERPOLATING LOCAL PETROV-GALERKIN METHOD FOR POTENTIAL PROBLEMS
    Chen, L.
    Liu, C.
    Ma, H. P.
    Cheng, Y. M.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2014, 6 (01)
  • [4] A meshless local Petrov-Galerkin method for geometrically nonlinear problems
    Xiong, YB
    Long, SY
    Hu, DA
    Li, GY
    ACTA MECHANICA SOLIDA SINICA, 2005, 18 (04) : 348 - 356
  • [5] A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR GEOMETRICALLY NONLINEAR PROBLEMS
    Xiong Yuanbo Long Shuyao Hu De’an Li Guangyao Department of Engineering Mechanics
    ActaMechanicaSolidaSinica, 2005, (04) : 348 - 356
  • [6] Local coordinate approach in meshless local Petrov-Galerkin method for beam problems
    Raju, IS
    Phillips, DR
    AIAA JOURNAL, 2003, 41 (05) : 975 - 978
  • [7] An application of the local Petrov-Galerkin method in solving geometrically nonlinear problems
    Xiong, Y. B.
    Long, S. Y.
    Hu, D. A.
    Li, G. Y.
    COMPUTATIONAL METHODS, PTS 1 AND 2, 2006, : 1509 - +
  • [8] MESHLESS LOCAL PETROV-GALERKIN METHOD FOR NONLINEAR HEAT CONDUCTION PROBLEMS
    Thakur, Harishchandra
    Singh, K. M.
    Sahoo, P. K.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2009, 56 (05) : 393 - 410
  • [9] A meshless local Petrov-Galerkin method for elasto-plastic problems
    Xiong, Y. B.
    Long, S. Y.
    Liu, K. Y.
    Li, G. Y.
    COMPUTATIONAL METHODS, PTS 1 AND 2, 2006, : 1477 - +
  • [10] The complex variable meshless local Petrov-Galerkin method for elastodynamic problems
    Dai, Baodong
    Wang, Qifang
    Zhang, Weiwei
    Wang, Linghui
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 311 - 321