Hybrid SMOTE-Ensemble Approach for Software Defect Prediction

被引:24
|
作者
Alsawalqah, Hamad [1 ]
Faris, Hossam [1 ]
Aljarah, Ibrahim [1 ]
Alnemer, Loai [1 ]
Alhindawi, Nouh [2 ]
机构
[1] Univ Jordan, King Abdullah Sch Informat Technol 2, Amman, Jordan
[2] Jadara Univ, Fac Sci & Informat Technol, Dept Software Engn, Irbid, Jordan
来源
SOFTWARE ENGINEERING TRENDS AND TECHNIQUES IN INTELLIGENT SYSTEMS, CSOC2017, VOL 3 | 2017年 / 575卷
关键词
Software defect prediction; SMOTE; Ensemble approaches; Data mining; Software engineering; FAULT PREDICTION; QUALITY;
D O I
10.1007/978-3-319-57141-6_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Software defect prediction is the process of identifying new defects/bugs in software modules. Software defect presents an error in a computer program, which is caused by incorrect code or incorrect programming logic. As a result, undiscovered defects lead to a poor quality software products. In recent years, software defect prediction has received a considerable amount of attention from researchers. Most of the previous defect detection algorithms are marred by low defect detection ratios. Furthermore, software defect prediction is very challenging problem due to the high imbalanced distribution, where the bug-free codes are much higher than defective ones. In this paper, the software defect prediction problem is formulated as a classification task, and then it examines the impact of several ensembles methods on the classification effectiveness. In addition, the best ensemble classifier will be selected to be trained again on an over-sampled datasets using the Synthetic Minority Over-sampling Technique (SMOTE) algorithm to tackle imbalanced distribution problem. The proposed hybrid method is evaluated using four software defects datasets. Experimental results demonstrate that the proposed method can effectively enhance the defect prediction accuracy.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 50 条
  • [41] A clustering approach for software defect prediction using hybrid social mimic optimization algorithm
    K Thirumoorthy
    J Jerold John Britto
    Computing, 2022, 104 : 2605 - 2633
  • [42] A feature dependent Naive Bayes approach and its application to the software defect prediction problem
    Arar, Omer Faruk
    Ayan, Kursat
    APPLIED SOFT COMPUTING, 2017, 59 : 197 - 209
  • [43] A Hybrid Multiple Models Transfer Approach for Cross-Project Software Defect Prediction
    Zhang, Shenggang
    Jiang, Shujuan
    Yan, Yue
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2023, 33 (03) : 343 - 374
  • [44] Neighbor cleaning learning based cost-sensitive ensemble learning approach for software defect prediction
    Li, Li
    Su, Renjia
    Zhao, Xin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (12)
  • [45] A random approximate reduct-based ensemble learning approach and its application in software defect prediction
    Jiang, Feng
    Yu, Xu
    Gong, Dunwei
    Du, Junwei
    INFORMATION SCIENCES, 2022, 609 : 1147 - 1168
  • [46] On the use of deep learning in software defect prediction
    Giray, Gorkem
    Bennin, Kwabena Ebo
    Koksal, Omer
    Babur, Onder
    Tekinerdogan, Bedir
    JOURNAL OF SYSTEMS AND SOFTWARE, 2023, 195
  • [47] Handling Imbalanced Data using Ensemble Learning in Software Defect Prediction
    Malhotra, Ruchika
    Jain, Juhi
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 300 - 304
  • [48] Software defect prediction using stacked denoising autoencoders and two-stage ensemble learning
    Tong, Haonan
    Liu, Bin
    Wang, Shihai
    INFORMATION AND SOFTWARE TECHNOLOGY, 2018, 96 : 94 - 111
  • [49] A hybrid approach for optimizing software defect prediction using a gray wolf optimization and multilayer perceptron
    Mustaqeem, Mohd
    Mustajab, Suhel
    Alam, Mahfooz
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2024, 17 (02) : 436 - 464
  • [50] An Effective Rank Approach to Software Defect Prediction Using Software Metrics
    Lakshmi, P.
    Maheswari, Latha T.
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO'16), 2016,