The recently discovered Parrondo's paradox claims that two losing games can result, under random or periodic alternation of their dynamics, in a winning game: "losing + losing = winning". In this paper we follow Parrondo's philosophy of combining different dynamics and we apply it to the case of one-dimensional quadratic maps. We prove that the periodic mixing of two chaotic dynamics originates an ordered dynamics in certain cases. This provides an explicit example (theoretically and numerically tested) of a different Parrondian paradoxical phenomenon: "chaos + chaos = order". (C) 2004 Elsevier B.V All rights reserved.
机构:
Univ Catania, Dipartimento Elettr Elettron & Sistemist, Syst & Control Grp, I-95125 Catania, ItalyUniv Catania, Dipartimento Elettr Elettron & Sistemist, Syst & Control Grp, I-95125 Catania, Italy
Fazzino, S
论文数: 引用数:
h-index:
机构:
Fortuna, L
Maniscalco, P
论文数: 0引用数: 0
h-index: 0
机构:
Univ Catania, Dipartimento Elettr Elettron & Sistemist, Syst & Control Grp, I-95125 Catania, ItalyUniv Catania, Dipartimento Elettr Elettron & Sistemist, Syst & Control Grp, I-95125 Catania, Italy
机构:
Univ Catania, Dipartimento Elettr Elettron & Sistemist, Syst & Control Grp, I-95125 Catania, ItalyUniv Catania, Dipartimento Elettr Elettron & Sistemist, Syst & Control Grp, I-95125 Catania, Italy
Fazzino, S
论文数: 引用数:
h-index:
机构:
Fortuna, L
Maniscalco, P
论文数: 0引用数: 0
h-index: 0
机构:
Univ Catania, Dipartimento Elettr Elettron & Sistemist, Syst & Control Grp, I-95125 Catania, ItalyUniv Catania, Dipartimento Elettr Elettron & Sistemist, Syst & Control Grp, I-95125 Catania, Italy