Can two chaotic systems give rise to order?

被引:75
作者
Almeida, J
Peralta-Salas, D [1 ]
Romera, M
机构
[1] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor 1, E-28040 Madrid, Spain
[2] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor 2, E-28040 Madrid, Spain
[3] CSIC, Inst Fis Aplicada, E-28006 Madrid, Spain
关键词
Parrondo's paradox; chaotic dynamics; stable periodic orbit;
D O I
10.1016/j.physd.2004.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recently discovered Parrondo's paradox claims that two losing games can result, under random or periodic alternation of their dynamics, in a winning game: "losing + losing = winning". In this paper we follow Parrondo's philosophy of combining different dynamics and we apply it to the case of one-dimensional quadratic maps. We prove that the periodic mixing of two chaotic dynamics originates an ordered dynamics in certain cases. This provides an explicit example (theoretically and numerically tested) of a different Parrondian paradoxical phenomenon: "chaos + chaos = order". (C) 2004 Elsevier B.V All rights reserved.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 26 条
[1]   Control systems with stochastic feedback [J].
Allison, A ;
Abbott, D .
CHAOS, 2001, 11 (03) :715-724
[2]   Game theory and non-linear dynamics: the Parrondo Paradox case study [J].
Arena, P ;
Fazzino, S ;
Fortuna, L ;
Maniscalco, P .
CHAOS SOLITONS & FRACTALS, 2003, 17 (2-3) :545-555
[3]   Outbreaks of Hantavirus induced by seasonality [J].
Buceta, J ;
Escudero, C ;
de la Rubia, FJ ;
Lindenberg, K .
PHYSICAL REVIEW E, 2004, 69 (02) :021906-1
[4]   Stationary and oscillatory spatial patterns induced by global periodic switching [J].
Buceta, J ;
Lindenberg, K ;
Parrondo, JMR .
PHYSICAL REVIEW LETTERS, 2002, 88 (02) :4
[5]  
Bucolo M., 2002, IEEE Circuits and Systems Magazine, V2, P4, DOI 10.1109/MCAS.2002.1167624
[6]  
Devaney RL, 1986, INTRO CHAOTIC DYNAMI
[7]   Quantum games and quantum strategies [J].
Eisert, J ;
Wilkens, M ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (15) :3077-3080
[8]   SENSITIVE DEPENDENCE ON PARAMETERS IN NONLINEAR DYNAMICS [J].
FARMER, JD .
PHYSICAL REVIEW LETTERS, 1985, 55 (04) :351-354
[9]   STRANGE ATTRACTORS THAT ARE NOT CHAOTIC [J].
GREBOGI, C ;
OTT, E ;
PELIKAN, S ;
YORKE, JA .
PHYSICA D, 1984, 13 (1-2) :261-268
[10]   SENSITIVE DEPENDENCE TO INITIAL CONDITIONS FOR ONE DIMENSIONAL MAPS [J].
GUCKENHEIMER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 70 (02) :133-160