Can two chaotic systems give rise to order?

被引:75
作者
Almeida, J
Peralta-Salas, D [1 ]
Romera, M
机构
[1] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor 1, E-28040 Madrid, Spain
[2] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor 2, E-28040 Madrid, Spain
[3] CSIC, Inst Fis Aplicada, E-28006 Madrid, Spain
关键词
Parrondo's paradox; chaotic dynamics; stable periodic orbit;
D O I
10.1016/j.physd.2004.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recently discovered Parrondo's paradox claims that two losing games can result, under random or periodic alternation of their dynamics, in a winning game: "losing + losing = winning". In this paper we follow Parrondo's philosophy of combining different dynamics and we apply it to the case of one-dimensional quadratic maps. We prove that the periodic mixing of two chaotic dynamics originates an ordered dynamics in certain cases. This provides an explicit example (theoretically and numerically tested) of a different Parrondian paradoxical phenomenon: "chaos + chaos = order". (C) 2004 Elsevier B.V All rights reserved.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 26 条
  • [1] Control systems with stochastic feedback
    Allison, A
    Abbott, D
    [J]. CHAOS, 2001, 11 (03) : 715 - 724
  • [2] Game theory and non-linear dynamics: the Parrondo Paradox case study
    Arena, P
    Fazzino, S
    Fortuna, L
    Maniscalco, P
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 17 (2-3) : 545 - 555
  • [3] Outbreaks of Hantavirus induced by seasonality
    Buceta, J
    Escudero, C
    de la Rubia, FJ
    Lindenberg, K
    [J]. PHYSICAL REVIEW E, 2004, 69 (02): : 021906 - 1
  • [4] Stationary and oscillatory spatial patterns induced by global periodic switching
    Buceta, J
    Lindenberg, K
    Parrondo, JMR
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (02) : 4
  • [5] Bucolo M., 2002, IEEE Circuits and Systems Magazine, V2, P4, DOI 10.1109/MCAS.2002.1167624
  • [6] Devaney RL, 1986, INTRO CHAOTIC DYNAMI
  • [7] Quantum games and quantum strategies
    Eisert, J
    Wilkens, M
    Lewenstein, M
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (15) : 3077 - 3080
  • [8] SENSITIVE DEPENDENCE ON PARAMETERS IN NONLINEAR DYNAMICS
    FARMER, JD
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (04) : 351 - 354
  • [9] STRANGE ATTRACTORS THAT ARE NOT CHAOTIC
    GREBOGI, C
    OTT, E
    PELIKAN, S
    YORKE, JA
    [J]. PHYSICA D, 1984, 13 (1-2): : 261 - 268
  • [10] SENSITIVE DEPENDENCE TO INITIAL CONDITIONS FOR ONE DIMENSIONAL MAPS
    GUCKENHEIMER, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 70 (02) : 133 - 160