Ab initio quantum Monte Carlo simulation of the warm dense electron gas

被引:62
|
作者
Dornheim, Tobias [1 ]
Groth, Simon [1 ]
Malone, Fionn D. [2 ]
Schoof, Tim [1 ]
Sjostrom, Travis [3 ]
Foulkes, W. M. C. [2 ]
Bonitz, Michael [1 ]
机构
[1] Christian Albrechts Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany
[2] Imperial Coll London, Dept Phys, Exhibit Rd, London SW7 2AZ, England
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
基金
英国工程与自然科学研究理事会;
关键词
EQUATION-OF-STATE; FUNCTIONAL THEORY; SIGN PROBLEM; SYSTEMS; THERMODYNAMICS; EXCHANGE; PLASMAS; MATTER;
D O I
10.1063/1.4977920
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Warm dense matter is one of the most active frontiers in plasma physics due to its relevance for dense astrophysical objects and for novel laboratory experiments in which matter is being strongly compressed, e. g., by high-power lasers. Its description is theoretically very challenging as it contains correlated quantum electrons at finite temperature-a system that cannot be accurately modeled by standard analytical or ground state approaches. Recently, several breakthroughs have been achieved in the field of fermionic quantum Monte Carlo simulations. First, it was shown that exact simulations of a finite model system (30. 100 electrons) are possible, which avoid any simplifying approximations such as fixed nodes [Schoof et al., Phys. Rev. Lett. 115, 130402 (2015)]. Second, a novel way to accurately extrapolate these results to the thermodynamic limit was reported by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. As a result, now thermodynamic results for the warm dense electron gas are available, which have an unprecedented accuracy on the order of 0.1%. Here, we present an overview on these results and discuss limitations and future directions. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Ab initio quantum Monte Carlo study of the positronic hydrogen cyanide molecule
    Kita, Yukiumi
    Maezono, Ryo
    Tachikawa, Masanori
    Towler, Mike
    Needs, Richard J.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (13):
  • [32] Quantum Monte Carlo for Ab Initio Calculations of Energy-Relevant Materials
    Wagner, Lucas K.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2014, 114 (02) : 94 - 101
  • [33] Quantum Monte Carlo: An ab initio molecular computational methodology for terascalle computing
    Aspuru-Guzik, Alan
    Salomon-Ferrer, Romelia
    Austin, Brian
    Domin, ik Domin
    Skinner, David
    Oliva, Ricardo
    Lester, William A., Jr.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1283 - U1283
  • [34] Calculating the entanglement spectrum in quantum Monte Carlo with application to ab initio Hamiltonians
    Tubman, Norm M.
    Yang, D. ChangMo
    PHYSICAL REVIEW B, 2014, 90 (08):
  • [35] Structure of pure metallic nanoclusters: Monte Carlo simulation and ab initio study
    I. A. Hijazi
    Y. H. Park
    The European Physical Journal D, 2010, 59 : 215 - 221
  • [36] The uniform electron gas at high temperatures: ab initio path integral Monte Carlo simulations and analytical theory
    Dornheim, Tobias
    Vorberger, Jan
    Moldabekov, Zhandos
    Roepke, Gerd
    Kraeft, Wolf-Dietrich
    HIGH ENERGY DENSITY PHYSICS, 2022, 45
  • [37] Ab initio path integral Monte Carlo approach to the static and dynamic density response of the uniform electron gas
    Groth, S.
    Dornheim, T.
    Vorberger, J.
    PHYSICAL REVIEW B, 2019, 99 (23)
  • [38] Structure of pure metallic nanoclusters: Monte Carlo simulation and ab initio study
    Hijazi, I. A.
    Park, Y. H.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 59 (02): : 215 - 221
  • [39] Ab initio kinetic Monte Carlo simulation of seeded emulsion polymerizations of styrene
    Drache, Marco
    Brandl, Katrin
    Reinhardt, Rebecca
    Beuermann, Sabine
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (16) : 10796 - 10805
  • [40] Quantum Monte Carlo Study of a Positron in an Electron Gas
    Drummond, N. D.
    Rios, P. Lopez
    Needs, R. J.
    Pickard, C. J.
    PHYSICAL REVIEW LETTERS, 2011, 107 (20)