Ab initio quantum Monte Carlo simulation of the warm dense electron gas

被引:62
|
作者
Dornheim, Tobias [1 ]
Groth, Simon [1 ]
Malone, Fionn D. [2 ]
Schoof, Tim [1 ]
Sjostrom, Travis [3 ]
Foulkes, W. M. C. [2 ]
Bonitz, Michael [1 ]
机构
[1] Christian Albrechts Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany
[2] Imperial Coll London, Dept Phys, Exhibit Rd, London SW7 2AZ, England
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
基金
英国工程与自然科学研究理事会;
关键词
EQUATION-OF-STATE; FUNCTIONAL THEORY; SIGN PROBLEM; SYSTEMS; THERMODYNAMICS; EXCHANGE; PLASMAS; MATTER;
D O I
10.1063/1.4977920
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Warm dense matter is one of the most active frontiers in plasma physics due to its relevance for dense astrophysical objects and for novel laboratory experiments in which matter is being strongly compressed, e. g., by high-power lasers. Its description is theoretically very challenging as it contains correlated quantum electrons at finite temperature-a system that cannot be accurately modeled by standard analytical or ground state approaches. Recently, several breakthroughs have been achieved in the field of fermionic quantum Monte Carlo simulations. First, it was shown that exact simulations of a finite model system (30. 100 electrons) are possible, which avoid any simplifying approximations such as fixed nodes [Schoof et al., Phys. Rev. Lett. 115, 130402 (2015)]. Second, a novel way to accurately extrapolate these results to the thermodynamic limit was reported by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. As a result, now thermodynamic results for the warm dense electron gas are available, which have an unprecedented accuracy on the order of 0.1%. Here, we present an overview on these results and discuss limitations and future directions. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit
    Dornheim, Tobias
    Groth, Simon
    Sjostrom, Travis
    Malone, Fionn D.
    Foulkes, W. M. C.
    Bonitz, Michael
    PHYSICAL REVIEW LETTERS, 2016, 117 (15)
  • [2] Chemical potential of the warm dense electron gas from ab initio path integral Monte Carlo simulations
    Dornheim, Tobias
    Bonitz, Michael
    Moldabekov, Zhandos A.
    Schwalbe, Sebastian
    Tolias, Panagiotis
    Vorberger, Jan
    PHYSICAL REVIEW B, 2025, 111 (11)
  • [3] Dynamic properties of the warm dense electron gas based on ab initio path integral Monte Carlo simulations
    Hamann, Paul
    Dornheim, Tobias
    Vorberger, Jan
    Moldabekov, Zhandos A.
    Bonitz, Michael
    PHYSICAL REVIEW B, 2020, 102 (12)
  • [4] Momentum distribution function and short-range correlations of the warm dense electron gas: Ab initio quantum Monte Carlo results
    Hunger, Kai
    Schoof, Tim
    Dornheim, Tobias
    Bonitz, Michael
    Filinov, Alexey
    PHYSICAL REVIEW E, 2021, 103 (05)
  • [5] Path-Integral Monte Carlo Simulation of the Warm Dense Homogeneous Electron Gas
    Brown, Ethan W.
    Clark, Bryan K.
    DuBois, Jonathan L.
    Ceperley, David M.
    PHYSICAL REVIEW LETTERS, 2013, 110 (14)
  • [6] Ab initio simulation of warm dense matter
    Bonitz, M.
    Dornheim, T.
    Moldabekov, Zh A.
    Zhang, S.
    Hamann, P.
    Kahlert, H.
    Filinov, A.
    Ramakrishna, K.
    Vorberger, J.
    PHYSICS OF PLASMAS, 2020, 27 (04)
  • [7] The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation
    Dornheim, T.
    Vorberger, J.
    Groth, S.
    Hoffmann, N.
    Moldabekov, Zh. A.
    Bonitz, M.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (19):
  • [8] Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes
    Groth, S.
    Schoof, T.
    Dornheim, T.
    Bonitz, M.
    PHYSICAL REVIEW B, 2016, 93 (08)
  • [9] Ab initio results for the static structure factor of the warm dense electron gas
    Dornheim, Tobias
    Groth, Simon
    Bonitz, Michael
    CONTRIBUTIONS TO PLASMA PHYSICS, 2017, 57 (10) : 468 - 478
  • [10] Ab initio results for the plasmon dispersion and damping of the warm dense electron gas
    Hamann, Paul
    Vorberger, Jan
    Dornheim, Tobias
    Moldabekov, Zhandos A.
    Bonitz, Michael
    CONTRIBUTIONS TO PLASMA PHYSICS, 2020, 60 (10)