Finite groups with supersoluble subgroups of given orders

被引:1
作者
Monakhov, V. S. [1 ]
Tyutyanov, V. N. [2 ]
机构
[1] Francisk Skorina Gomel State Univ, Gomel 246019, BELARUS
[2] Int Univ MITSO, Gomel Branch, Gomel 246029, BELARUS
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2019年 / 25卷 / 04期
关键词
finite group; soluble group; maximal subgroup; nilpotent subgroup; supersoluble subgroup;
D O I
10.21538/0134-4889-2019-25-4-155-163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a finite group G with the following property: for any of its maximal subgroups H, there exists a subgroup H-1 such that vertical bar H-1 vertical bar = vertical bar H vertical bar and H-1 is an element of F, where F is the formation of all nilpotent groups or all supersoluble groups. We prove that, if F = N is the formation of all nilpotent groups and G is nonnilpotent, then vertical bar pi(G)vertical bar = 2 and G has a normal Sylow subgroup. For the formation F = U of all supersoluble groups and a soluble group G with the above property, we prove that G is supersoluble, or 2 <= vertical bar pi(G)vertical bar <= 3; if vertical bar pi(G)vertical bar = 3, then G has a Sylow tower of supersoluble type; if vertical bar pi(G)vertical bar = 2, then either G has a normal Sylow subgroup or, for the largest p is an element of pi(G), some maximal subgroup of a Sylow p-subgroup is normal in G. If G is nonsoluble and, for each maximal subgroup of G, there exists a supersoluble subgroup of the same order, then every nonabelian composition factor of G is isomorphic to PSL2(p) for some prime p; we list all such values of p.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
[31]   Finite Groups with Given Systems of Conditionally Seminormal Subgroups [J].
Trofimuk, A. A. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (12) :6624-6632
[32]   Finite groups with given nearly Sφ-embedded subgroups [J].
Amjid, Venus ;
Cao, Chenchen ;
Mao, Yuemei .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (08)
[33]   On Products of Generalised Supersoluble Finite Groups [J].
A. Ballester-Bolinches ;
W. M. Fakieh ;
M. C. Pedraza-Aguilera .
Mediterranean Journal of Mathematics, 2019, 16
[34]   Finite groups with given non-nilpotent maximal subgroups of prime index [J].
Yi, Xiaolan ;
Jiang, Shiyang ;
Kamornikov, S. F. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (05)
[35]   LATTICE CHARACTERIZATIONS OF FINITE SUPERSOLUBLE GROUPS [J].
Liu, A. -M. ;
Guo, W. ;
Safonova, I. N. ;
Skiba, A. N. .
SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (03) :520-529
[36]   Finite groups with given indices of 2-maximal subgroups [J].
Kniahina, Viktoryia ;
Monakhov, Victor .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (07)
[37]   The number of isomorphism classes of finite groups with given element orders [J].
Deng H. ;
Lucido M.S. ;
Shi W. .
Algebra and Logic, 2002, 41 (1) :39-46
[38]   FINITE GROUPS WITH GIVEN QUANTITATIVE NON-NILPOTENT SUBGROUPS [J].
Shi, Jiangtao ;
Zhang, Cui .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (09) :3346-3355
[39]   FINITE GROUPS WITH GIVEN σ-EMBEDDED AND σ-n-EMBEDDED SUBGROUPS [J].
Wu, Zhenfeng ;
Zhang, Chi ;
Huang, Jianhong .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2017, 48 (03) :429-448
[40]   Finite groups with given sets of F-subnormal subgroups [J].
Murashka, Viachaslau, I .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (04)