Finite groups with supersoluble subgroups of given orders

被引:1
作者
Monakhov, V. S. [1 ]
Tyutyanov, V. N. [2 ]
机构
[1] Francisk Skorina Gomel State Univ, Gomel 246019, BELARUS
[2] Int Univ MITSO, Gomel Branch, Gomel 246029, BELARUS
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2019年 / 25卷 / 04期
关键词
finite group; soluble group; maximal subgroup; nilpotent subgroup; supersoluble subgroup;
D O I
10.21538/0134-4889-2019-25-4-155-163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a finite group G with the following property: for any of its maximal subgroups H, there exists a subgroup H-1 such that vertical bar H-1 vertical bar = vertical bar H vertical bar and H-1 is an element of F, where F is the formation of all nilpotent groups or all supersoluble groups. We prove that, if F = N is the formation of all nilpotent groups and G is nonnilpotent, then vertical bar pi(G)vertical bar = 2 and G has a normal Sylow subgroup. For the formation F = U of all supersoluble groups and a soluble group G with the above property, we prove that G is supersoluble, or 2 <= vertical bar pi(G)vertical bar <= 3; if vertical bar pi(G)vertical bar = 3, then G has a Sylow tower of supersoluble type; if vertical bar pi(G)vertical bar = 2, then either G has a normal Sylow subgroup or, for the largest p is an element of pi(G), some maximal subgroup of a Sylow p-subgroup is normal in G. If G is nonsoluble and, for each maximal subgroup of G, there exists a supersoluble subgroup of the same order, then every nonabelian composition factor of G is isomorphic to PSL2(p) for some prime p; we list all such values of p.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
  • [21] On two classes of finite supersoluble groups
    Fakieh, W. M.
    Hijazi, R. A.
    Ballester-Bolinches, A.
    Beidleman, J. C.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1110 - 1115
  • [22] Finite groups with given systems of σ-semipermutable subgroups
    Hu, Bin
    Huang, Jianhong
    Skiba, Alexander N.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (02)
  • [23] Finite Groups with Given Weakly σ-Permutable Subgroups
    Cao, C.
    Wu, Z.
    Guo, W.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (01) : 157 - 165
  • [24] On the finite groups of supersoluble type
    A.F. Vasil’ev
    T.I. Vasil’eva
    V.N. Tyutyanov
    Siberian Mathematical Journal, 2010, 51 : 1004 - 1012
  • [25] Finite groups with given properties of basic subgroups of fans of Sylow subgroups
    Vasilyeva, Tatsiana, I
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (01)
  • [26] ON THE FINITE GROUPS OF SUPERSOLUBLE TYPE
    Vasil'ev, A. F.
    Vasil'eva, T. I.
    Tyutyanov, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (06) : 1004 - 1012
  • [27] Products of Finite Supersoluble Groups
    Liu, Xi
    Guo, Wenbin
    Shum, K. P.
    ALGEBRA COLLOQUIUM, 2009, 16 (02) : 333 - 340
  • [28] On a Finite Group Generated by Subnormal Supersoluble Subgroups
    Monakhov, V. S.
    MATHEMATICAL NOTES, 2022, 111 (5-6) : 982 - 983
  • [29] On a Finite Group Generated by Subnormal Supersoluble Subgroups
    V. S. Monakhov
    Mathematical Notes, 2022, 111 : 982 - 983
  • [30] Finite Groups with Given Systems of Conditionally Seminormal Subgroups
    A. A. Trofimuk
    Lobachevskii Journal of Mathematics, 2024, 45 (12) : 6624 - 6632