The bi-directional communication system is an indispensable component in smart grid (SG) for monitoring and exchanging essential information among the electrical devices. IEEE 802.11s based wireless mesh networks recently have been proposed as an important networking technology to deploy in SG for data collection and remote control purposes, as the cost of networking equipments decreases and performance increases. In this paper, we focus on analyzing the MAC layer performance for IEEE 802.11s wireless mesh networks in the smart grid based on Markov model, taking into account the impact of hidden nodes and different QoS requirements of smart grid applications. We first develop a new Markov chain model to analyze the back-off process for different applications with hidden nodes problem. Then based on the analytical model, we derive a few MAC layer performance metrics such as MAC layer packet dropping probability, the mean throughput and the mean packet delay which contains the queuing delay. Finally, the proposed analytical model is validated via comparing the analytical results with simulation results by ns-3 in NAN scenarios with various applications. We observe a good match between the analytical model and simulations which confirms the veracity of our model.